Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-08-30T02:14:31.980Z Has data issue: false hasContentIssue false

Dynamics of wall-mounted tandem flexible plates with unequal lengths in a laminar boundary layer

Published online by Cambridge University Press:  26 August 2025

Junqi Xiong
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Kui Liu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Haibo Huang*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
*
Corresponding author: Haibo Huang, huanghb@ustc.edu.cn

Abstract

This study presents a numerical investigation of wall-mounted tandem flexible plates with unequal lengths in a laminar boundary layer flow, examining both two-dimensional (2-D) and three-dimensional (3-D) configurations. Key parameters influencing the system include the plate’s bending stiffness ($K$), Reynolds number (${Re}$) and length ratio ($L^*$). Five motion modes are identified: dual collapse (DC), flapping collapse (FC), dual flapping (DF), static flapping (SF) and dual static (DS). A phase diagram in the ($K,L^*$) space is constructed to illustrate their regimes. We focus on DF and SF modes, which significantly amplify oscillations in the downstream plate – critical for energy harvesting. These amplification mechanisms are classified into externally driven and self-induced modes, with the self-induced mechanism, which maximises the downstream plate’s amplitude, being the main focus of our study. A rigid–flexible (RF) configuration is introduced by setting the upstream plate as rigid, showing enhanced performance at high ${Re}$, with oscillation amplitudes up to 100 % larger than the isolated flexible (IF) plate configuration. A relation is developed to explain these results, relating oscillation amplitude to trailing-edge velocity, oscillation frequency and chord length. Force analysis reveals that the RF configuration outperforms both IF and flexible–flexible (FF) configurations. Unlike frequency lock-in, the RF configuration exhibits frequency unlocking, following a $-2/3$ scaling law between the Strouhal number ($St$) and ${Re}$. Results from the 3-D RF configuration confirm that the 2-D model remains applicable, with the self-induced amplification mechanism persisting in 3-D scenarios. These findings enhance understanding of fluid–structure interactions, and offer valuable insights for designing efficient energy harvesting systems.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alben, S., Shelley, M. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420 (6915), 479481.10.1038/nature01232CrossRefGoogle ScholarPubMed
Alben, S. & Shelley, M.J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100 (7), 074301.10.1103/PhysRevLett.100.074301CrossRefGoogle Scholar
Chen, S. & Doolen, G.D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.10.1146/annurev.fluid.30.1.329CrossRefGoogle Scholar
Chen, Z., Liu, Y. & Sung, H.J. 2024 Flow-induced oscillations of an S-shaped buckled flexible filament. J. Fluid Mech. 1000, A52.10.1017/jfm.2024.1033CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F.M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.10.1017/S002211200600190XCrossRefGoogle Scholar
Doyle, J.F. 2013 Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability. Springer Science & Business Media.Google Scholar
Eloy, C., Souilliez, C. & Schouveiler, L. 2007 Flutter of a rectangular plate. J. Fluids Struct. 23 (6), 904919.10.1016/j.jfluidstructs.2007.02.002CrossRefGoogle Scholar
Essel, E.E., Balachandar, R. & Tachie, M.F. 2023 Effects of sheltering on the unsteady wake dynamics of tandem cylinders mounted in a turbulent boundary layer. J. Fluid Mech. 954, A40.10.1017/jfm.2022.1029CrossRefGoogle Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.10.1006/jcph.1993.1081CrossRefGoogle Scholar
Gosselin, F., de Langre, E. & Machado-Almeida, B.A. 2010 Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319341.10.1017/S0022112009993673CrossRefGoogle Scholar
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 046308.10.1103/PhysRevE.65.046308CrossRefGoogle ScholarPubMed
Hamed, A.M., Peterlein, A.M. & Randle, L.V. 2019 Turbulent boundary layer perturbation by two wall-mounted cylindrical roughness elements arranged in tandem: effects of spacing and height ratio. Phys. Fluids 31 (6), 065110.10.1063/1.5099493CrossRefGoogle Scholar
Henriquez, S. & Barrero-Gil, A. 2014 Reconfiguration of flexible plates in sheared flow. Mech. Res. Commun. 62, 14.10.1016/j.mechrescom.2014.08.001CrossRefGoogle Scholar
Hua, R.-N., Zhu, L. & Lu, X.-Y. 2014 Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech. 759, 5672.10.1017/jfm.2014.571CrossRefGoogle Scholar
Huang, H. & Lu, X.-Y. 2017 An ellipsoidal particle in tube Poiseuille flow. J. Fluid Mech. 822, 664688.10.1017/jfm.2017.298CrossRefGoogle Scholar
Huang, H., Wei, H. & Lu, X.-Y. 2018 Coupling performance of tandem flexible inverted flags in a uniform flow. J. Fluid Mech. 837, 461476.10.1017/jfm.2017.875CrossRefGoogle Scholar
Huang, W.-X., Shin, S.J. & Sung, H.J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226 (2), 22062228.10.1016/j.jcp.2007.07.002CrossRefGoogle Scholar
Huang, W.-X. & Sung, H.J. 2010 Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301336.10.1017/S0022112010000248CrossRefGoogle Scholar
Iaccarino, G. & Mittal, R. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.Google Scholar
Jin, Y., Kim, J.-T., Fu, S. & Chamorro, L.P. 2019 Flow-induced motions of flexible plates: fluttering, twisting and orbital modes. J. Fluid Mech. 864, 273285.10.1017/jfm.2019.40CrossRefGoogle Scholar
Kim, D., Cossé, J., Huertas Cerdeira, C. & Gharib, M. 2013 Flapping dynamics of an inverted flag. J. Fluid Mech. 736, R1.10.1017/jfm.2013.555CrossRefGoogle Scholar
Kim, S., Huang, W.-X. & Sung, H.J. 2010 Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511521.10.1017/S0022112010003514CrossRefGoogle Scholar
Kumar, V., Assam, A. & Prabhakaran, D. 2023 Dynamics of a wall-mounted cantilever plate under low Reynolds number transverse flow in a two-dimensional channel. Phys. Fluids 35 (8), 083605.10.1063/5.0156595CrossRefGoogle Scholar
Kunze, S. & Brücker, C. 2012 Control of vortex shedding on a circular cylinder using self-adaptive hairy-flaps. C. R. Méc 340 (1–2), 4156.10.1016/j.crme.2011.11.009CrossRefGoogle Scholar
de Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40 (1), 141168.10.1146/annurev.fluid.40.111406.102135CrossRefGoogle Scholar
Leclercq, T. & de Langre, E. 2016 Drag reduction by elastic reconfiguration of non-uniform beams in non-uniform flows. J. Fluids Struct. 60, 114129.10.1016/j.jfluidstructs.2015.10.007CrossRefGoogle Scholar
Liu, K. & Huang, H. 2024 Dynamics of weighted flexible ribbons in a uniform flow. J. Fluid Mech. 990, A11.10.1017/jfm.2024.512CrossRefGoogle Scholar
Luhar, M. & Nepf, H.M. 2011 Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56 (6), 20032017.10.4319/lo.2011.56.6.2003CrossRefGoogle Scholar
Mao, Q., Liu, Y. & Sung, H.J. 2023 Snap-through dynamics of a buckled flexible filament in a uniform flow. J. Fluid Mech. 969, A33.10.1017/jfm.2023.596CrossRefGoogle Scholar
Michelin, S. & Doaré, O. 2013 Energy harvesting efficiency of piezoelectric flags in axial flows. J. Fluid Mech. 714, 489504.10.1017/jfm.2012.494CrossRefGoogle Scholar
Ni, J., Ji, C., Xu, D., Zhang, X. & Liang, D. 2023 On Monami modes and scales of a flexible vegetation array in a laminar boundary layer. Phys. Fluids 35 (7), 074113.10.1063/5.0155506CrossRefGoogle Scholar
Nové-Josserand, C., Castro Hebrero, F., Petit, L.-M., Megill, W.M., Godoy-Diana, R. & Thiria, B. 2018 Surface wave energy absorption by a partially submerged bio-inspired canopy. Bioinspir. Biomim. 13 (3), 036006.10.1088/1748-3190/aaae8cCrossRefGoogle ScholarPubMed
O’Connor, J. & Revell, A. 2019 Dynamic interactions of multiple wall-mounted flexible flaps. J. Fluid Mech. 870, 189216.10.1017/jfm.2019.266CrossRefGoogle Scholar
Peng, Z.-R., Huang, H. & Lu, X.-Y. 2018 Hydrodynamic schooling of multiple self-propelled flapping plates. J. Fluid Mech. 853, 587600.10.1017/jfm.2018.634CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numer. 11, 479517.10.1017/S0962492902000077CrossRefGoogle Scholar
Py, C., De Langre, E. & Moulia, B. 2006 A frequency lock-in mechanism in the interaction between wind and crop canopies. J. Fluid Mech. 568, 425449.10.1017/S0022112006002667CrossRefGoogle Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101 (19), 194502.10.1103/PhysRevLett.101.194502CrossRefGoogle ScholarPubMed
Rojratsirikul, P., Genc, M.S., Wang, Z. & Gursul, I. 2011 Flow-induced vibrations of low aspect ratio rectangular membrane wings. J. Fluid. Struct. 27 (8), 12961309.10.1016/j.jfluidstructs.2011.06.007CrossRefGoogle Scholar
Tao, J. & Yu, X.B. 2012 Hair flow sensors: from bio-inspiration to bio-mimicking – a review. Smart Mater. Struct. 21 (11), 113001.10.1088/0964-1726/21/11/113001CrossRefGoogle Scholar
Uddin, E., Huang, W.-X. & Sung, H.J. 2013 Interaction modes of multiple flexible flags in a uniform flow. J. Fluid Mech. 729, 563583.10.1017/jfm.2013.314CrossRefGoogle Scholar
Wang, J., He, G., Dey, S. & Fang, H. 2022 Influence of submerged flexible vegetation on turbulence in an open-channel flow. J. Fluid Mech. 947, A31.10.1017/jfm.2022.598CrossRefGoogle Scholar
Wang, S. & Zhang, X. 2011 An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J. Comput. Phys. 230 (9), 34793499.10.1016/j.jcp.2011.01.045CrossRefGoogle Scholar
Xu, C., Liu, X., Liu, K., Xiong, Y. & Huang, H. 2022 A free flexible flap in channel flow. J. Fluid Mech. 941, A12.10.1017/jfm.2022.282CrossRefGoogle Scholar
Yu, Z. & Eloy, C. 2018 Extension of Lighthill’s slender-body theory to moderate aspect ratios. J. Fluids Struct. 76, 8494.10.1016/j.jfluidstructs.2017.09.010CrossRefGoogle Scholar
Zhang, C., Huang, H. & Lu, X.-Y. 2020 a Effect of trailing-edge shape on the self-propulsive performance of heaving flexible plates. J. Fluid Mech. 887, A7.10.1017/jfm.2019.1076CrossRefGoogle Scholar
Zhang, J.-T. & Nakamura, T. 2024 Dynamics of a wall-mounted flexible plate in oscillatory flows. Phys. Fluids 36 (7), 073628.10.1063/5.0214147CrossRefGoogle Scholar
Zhang, X., He, G. & Zhang, X. 2020 b Fluid–structure interactions of single and dual wall-mounted 2D flexible filaments in a laminar boundary layer. J. Fluids Struct. 92, 102787.10.1016/j.jfluidstructs.2019.102787CrossRefGoogle Scholar