Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-22T06:34:21.316Z Has data issue: false hasContentIssue false

Effect of a transverse flow on the convective dissolution of $\textbf{CO}_{\textbf{2}}$ in water

Published online by Cambridge University Press:  20 August 2025

Patrice Meunier*
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, Marseille, France
Max Riedinger
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, Marseille, France
Adam Walsh
Affiliation:
Wolfson School of Mechanical and Electrical Engineering, Loughborough University, Loughborough LE11 3TU, UK
Francois Nadal
Affiliation:
CEA, Le Barp, France
Christophe Brouzet
Affiliation:
Université Côte d’Azur, CNRS, INPHYNI, Nice, France
*
Corresponding author: Patrice Meunier, meunier@irphe.univ-mrs.fr

Abstract

We study experimentally, numerically and theoretically the gravitational instability induced by dissolution of carbon dioxide with a forced lateral flow. The study is restricted to the model case of a vertical Hele-Shaw cell filled with water. While a transverse (horizontal) flow is continuously forced through the whole cell, the carbon dioxide is introduced above the liquid–gas interface so that a $\textrm {CO}_2$-enriched diffusive layer gradually forms on top of the liquid phase. The diffusive layer destabilises through a convective process which entrains the $\textrm {CO}_2$–water mixture towards the bottom of the cell. The concentration fields are measured quantitatively by means of a pH-sensitive dye (bromocresol green) that reveals a classic fingering pattern. We observe that the transverse background flow has a stabilising effect on the gravitational instability. At low velocity (i.e. for small thickness-based Péclet numbers), the behaviour of the system is hardly altered by the background flow. Beyond a threshold value of the Péclet number ($\textit{Pe} \sim 15$), the emergence of the fingering instability is delayed (i.e. the growth rate becomes smaller), while the most unstable wavelength is increased. These trends can be explained by the stabilising role of the Taylor–Aris dispersion in the horizontal direction and a model is proposed, based on previous works, which justifies the scalings observed in the limit of large Péclet number for the growth rate ($\sigma ^\star \sim \textit{Pe}^{-4}$) and the most unstable wavelength ($\lambda ^\star \sim \textit{Pe}^{\,5/2}$). The flux (rate mass transfer) of $\textrm {CO}_2$ in the nonlinear regime is also weakly decreased by the background transverse flow.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 235 (1200), 6777.Google Scholar
Bear, J. 2018 Modeling Phenomena of Flow and Transport in Porous Media. Springer Cham.10.1007/978-3-319-72826-1CrossRefGoogle Scholar
De, N. 2021 Two dimensional relaxation of gravitational instability in porous media. PhD thesis, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.Google Scholar
De Paoli, M. 2023 Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies. Eur. Phys. J. E 46 (12), 129.10.1140/epje/s10189-023-00390-8CrossRefGoogle ScholarPubMed
De Paoli, M., Zonta, F. & Soldati, A. 2017 Dissolution in anisotropic porous media: modelling convection regimes from onset to shutdown. Phys. Fluids 29, 026601.10.1063/1.4975393CrossRefGoogle Scholar
Dhar, J., Meunier, P., Nadal, F. & Méheust, Y. 2022 Convective dissolution of carbon dioxide in two- and three-dimensional porous media: the impact of hydrodynamic dispersion. Phys. Fluids 34, 064114.10.1063/5.0086370CrossRefGoogle Scholar
Elenius, M.T. & Johannsen, K. 2012 On the time scales of nonlinear instability in miscible displacement porous media flow. Comput. Geosci. 16 (4), 901911.10.1007/s10596-012-9294-2CrossRefGoogle Scholar
Emami-Meybodi, H. 2017 a Dispersion-driven instability of mixed convective flow in porous media. Phys. Fluids 29, 094102.10.1063/1.4990386CrossRefGoogle Scholar
Emami-Meybodi, H. 2017 b Stability analysis of dissolution-driven convection in porous media. Phys. Fluids 29, 014102.10.1063/1.4974275CrossRefGoogle Scholar
Emami-Meybodi, H., Hassanzadeh, H. & Ennis-King, J. 2015 CO $_2$ dissolution in the presence of background flow of deep saline aquifers. Water Resour. Res. 51, 25952615.10.1002/2014WR016659CrossRefGoogle Scholar
Ennis-King, J., Preston, I. & Paterson, L. 2005 Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17, 084107.10.1063/1.2033911CrossRefGoogle Scholar
Hassanzadeh, H., Pooladi-Darvish, M. & Keith, D.W. 2007 Scaling behavior of convective mixing, with application to geological storage of CO $_2$ . AIChE J. 53 (5), 11211131.10.1002/aic.11157CrossRefGoogle Scholar
Hassanzadeh, H., Pooladi-Darvish, M. & Keith, D.W. 2009 The effect of natural flow of aquifers and associated dispersion on the onset of buoyancy‐driven convection in a saturated porous medium. AIChE J. 55 (2), 475485.10.1002/aic.11664CrossRefGoogle Scholar
Hewitt, D.R., Neufeld, J.A. & Lister, J.R. 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.10.1017/jfm.2013.23CrossRefGoogle Scholar
Hidalgo, J.J. & Carrera, J. 2009 Effect of dispersion on the onset of convection during CO $_2$ sequestration. J. Fluid Mech. 640, 441452.10.1017/S0022112009991480CrossRefGoogle Scholar
Hidalgo, J.J., MacMinn, C.W. & Juanes, R. 2013 Dynamics of convective dissolution from a migrating current of carbon dioxide. Adv. Water Resour. 62, 511519.10.1016/j.advwatres.2013.06.013CrossRefGoogle Scholar
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46 (1), 255272.10.1146/annurev-fluid-011212-140627CrossRefGoogle Scholar
Letelier, J.A., Mujica, N. & Ortega, J.H. 2019 Perturbative corrections for the scaling of heat transport in a Hele-Shaw geometry and its application to geological vertical fractures. J. Fluid Mech. 864, 746767.10.1017/jfm.2019.3CrossRefGoogle Scholar
Liang, Y., Wen, B., Hesse, M.A. & DiCarlo, D. 2018 Effect of dispersion on solutal convection in porous media. Geophys. Res. Lett. 45 (18), 96909698.10.1029/2018GL079849CrossRefGoogle Scholar
MacMinn, C.W. & Juanes, R. 2013 Buoyant currents arrested by convective dissolution. Geophys. Res. Lett. 40 (10), 20172022.10.1002/grl.50473CrossRefGoogle Scholar
MacMinn, C.W., Neufeld, J.A., Hesse, M.A. & Huppert, H.E. 2012 Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res. 48 (11), 111.10.1029/2012WR012286CrossRefGoogle Scholar
Martin, J., Rakotomalala, N. & Salin, D. 2002 Gravitational instability of miscible fluids in a Hele-Shaw cell. Phys. Fluids 14 (2), 902905.10.1063/1.1431245CrossRefGoogle Scholar
B., Metz, Davidson, O., de Coninck, H., Loos, M. & Meyer, L. 2005 IPCC special report on carbon dioxide capture and storage. Climate Change, Tech. Rep. Intergovernmental Panel on Climate Change.Google Scholar
Michel-Meyer, I., Shavit, U., Tsinober, A. & Rosenzweig, R. 2020 The role of water flow and dispersive fluxes in the dissolution of CO $_2$ in deep saline aquifers. Water Resour. Res. 56, e2020WR028184.10.1029/2020WR028184CrossRefGoogle Scholar
Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A. & Huppert, H.E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, L22404.10.1029/2010GL044728CrossRefGoogle Scholar
Orr, F.M. 2009 Onshore geologic storage of CO $_2$ . Science 325 (5948), 16561658.10.1126/science.1175677CrossRefGoogle Scholar
Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J. & Zhang, K. 2010 High-resolution simulation and characterization of density-driven flow in CO $_2$ storage in saline aquifers. Adv. Water Resour. 33, 443455.10.1016/j.advwatres.2010.01.009CrossRefGoogle Scholar
Riaz, A., Hesse, M., Tchelepi, H.A. & Orr, F.M. 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.10.1017/S0022112005007494CrossRefGoogle Scholar
Slim, A.C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech. 741, 461491.10.1017/jfm.2013.673CrossRefGoogle Scholar
Slim, A.C., Bandi, M.M., Miller, J.C. & Mahadevan, L. 2013 Dissolution-driven convection in a Hele-Shaw cell. Phys. Fluids 25, 024101.10.1063/1.4790511CrossRefGoogle Scholar
Souzy, M., Lhuissier, H., Méheust, Y., Le Borgne, T. & Metzger, B. 2020 Velocity distributions, dispersion and stretching in three-dimensional porous media. J. Fluid Mech. 891, A16.10.1017/jfm.2020.113CrossRefGoogle Scholar
Stone, H.A., Strook, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Tanaka, R., Almarcha, C., Nagatsu, Y., Méheust, Y. & Meunier, P. 2024 Chemically enhanced convective dissolution of CO. Phys. Rev. Lett. 132, 084002.10.1103/PhysRevLett.132.084002CrossRefGoogle ScholarPubMed
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219 (1137), 186203.Google Scholar
Tsinober, A., Rosenzweig, R., Class, H., Helmig, R. & Shavit, U. 2022 The role of mixed convection and hydrodynamic dispersion during CO $_2$ dissolution in saline aquifers: a numerical study. Water Resour. Res. 58, e2021WR030494.10.1029/2021WR030494CrossRefGoogle Scholar
Tsinober, A., Shavit, U. & Rosenzweig, R. 2023 Numerical investigation of the influence of hydrodynamic dispersion on solutal natural convection. Water Resour. Res. 59, e2023WR034475.10.1029/2023WR034475CrossRefGoogle Scholar
Vreme, A. 2015 Dynamique d’ingestion et de désorption du gaz carbonique en solution aqueuse. PhD thesis, Université de Reims Champagne-Ardenne, France.Google Scholar
Vreme, A., Nadal, F., Pouligny, B., Jeandet, P., Liger-Belair, G. & Meunier, P. 2016 Gravitational instability due to the dissolution of carbon dioxide in a Hele-Shaw cell. Phys. Rev. Fluids 1, 064301.10.1103/PhysRevFluids.1.064301CrossRefGoogle Scholar
Wang, L., Nakanishi, Y., Hyodo, A. & Suekane, T. 2016 Three-dimensional structure of natural convection in a porous medium: effect of dispersion on finger structure. Intl J. Greenh. Gas Control 53, 274283.10.1016/j.ijggc.2016.08.018CrossRefGoogle Scholar
Wen, B., Chang, K.W. & Hesse, M.A. 2018 Rayleigh–Darcy convection with hydrodynamic dispersion. Phys. Rev. Fluids 3, 123801.10.1103/PhysRevFluids.3.123801CrossRefGoogle Scholar
Wooding, R.A. 1960 Instability of a viscous liquid of variable density in a vertical Hele-Shaw cell. J. Fluid Mech. 7 (4), 501515.10.1017/S0022112060000256CrossRefGoogle Scholar
Supplementary material: File

Meunier et al. supplementary movie 1

Figure 3a Experimental field of concentration for a Péclet number equal to 2
Download Meunier et al. supplementary movie 1(File)
File 4.6 MB
Supplementary material: File

Meunier et al. supplementary movie 2

Figure 3b Experimental field of concentration for a Péclet number equal to 2
Download Meunier et al. supplementary movie 2(File)
File 4.3 MB
Supplementary material: File

Meunier et al. supplementary movie 3

Figure 3c Experimental field of concentration for a Péclet number equal to 60
Download Meunier et al. supplementary movie 3(File)
File 1.5 MB