Skip to main content

The effect of heat release on the entrainment in a turbulent mixing layer

  • Reza Jahanbakhshi (a1) and Cyrus K. Madnia (a1)

Direct numerical simulations of a temporally evolving compressible reacting mixing layer have been performed to study the entrainment of the irrotational flow into the turbulent region across the turbulent/non-turbulent interface (TNTI). In order to study the effects of heat release and interaction of the flame with the TNTI on turbulence several cases with different heat release levels, $Q$ , and stoichiometric mixture fractions are chosen for the simulations with the highest opted value for $Q$ corresponding to hydrogen combustion in air. The combustion is mimicked by a one-step irreversible global reaction, and infinitely fast chemistry approximation is used to compute the species mass fractions. Entrainment is studied via two mechanisms: nibbling, considered as the vorticity transport across the TNTI, and engulfment, the drawing of the pockets of the outside irrotational fluid into the turbulent region. As the level of heat release increases, the total entrained mass flow rate into the mixing layer decreases. In a reacting mixing layer by increasing the heat release rate, the mass flow rate due to nibbling is shown to decrease mostly due to a reduction of the local entrainment velocity, while the surface area of the TNTI does not change significantly. It is also observed that nibbling is a viscous dominated mechanism in non-reacting flows, whereas it is mostly carried out by inviscid terms in reacting flows with high level of heat release. The contribution of the engulfment to entrainment is small for the non-reacting mixing layers, while mass flow rate due to engulfment can constitute close to 40 % of the total entrainment in reacting cases. This increase is primarily related to a decrease of entrained mass flow rate due to nibbling, while the entrained mass flow rate due to engulfment does not change significantly in reacting cases. It is shown that the total entrained mass flow rate in reacting and non-reacting compressible mixing layers can be estimated from an expression containing the convective Mach number and the density change due to heat release.

Corresponding author
Email address for correspondence:
Hide All

Present address: Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218-2682, USA.

Hide All
Aluie, H. 2013 Scale decomposition in compressible turbulence. Physica D 247 (1), 5465.
Anand, R. K., Boersma, B. J. & Agrawal, A. 2009 Detection of turbulent/non-turbulent interface for an axisymmetric turbulent jet: evaluation of known criteria and proposal of a new criterion. Exp. Fluids 47 (6), 9951007.
Attili, A. & Bisetti, F. 2012 Statistics and scaling of turbulence in a spatially developing mixing layer at Re 𝜆 = 250. Phys. Fluids 24 (3), 035109.
Ayachit, U. 2015 The Paraview Guide: A Parallel Visualization Application. Kitware, Inc.
Babu, P. C. & Mahesh, K. 2004 Upstream entrainment in numerical simulations of spatially evolving round jets. Phys. Fluids 16 (10), 36993705.
Barone, M. F., Oberkampf, W. L. & Blottner, F. G. 2006 Validation case study: prediction of compressible turbulent mixing layer growth rate. AIAA J. 44 (7), 14881497.
Becker, H. A. & Yamazaki, S. 1978 Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames. Combust. Flame 33, 123149.
Bernal, L. P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499525.
Bilger, R. W. 1976 The structure of diffusion flames. Combust. Sci. Technol. 13 (1–6), 155170.
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.
Bogdanoff, D. W. 1983 Compressibility effects in turbulent shear layers. AIAA J. 21 (6), 926927.
Borrell, G. & Jiménez, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.
Brown, G. L. 1975 The entrainment and large structure in turbulent mixing layers. In 5th Australasian Conference on Hydraulics and Fluid Mechanics, vol. 1, pp. 352359. University of Adelaide.
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (04), 775816.
Burke, S. P. & Schumann, T. E. W. 1928 Diffusion flames. Ind. Engng Chem. 20 (10), 9981004.
Chauhan, K., Philip, J., de Silva, C. M., Hutchins, N. & Marusic, I. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.
Chinzei, N., Masuya, G., Komuro, T., Murakami, A. & Kudou, K. 1986 Spreading of two-stream supersonic turbulent mixing layers. Phys. Fluids 29 (5), 13451347.
Corrsin, S. & Kistler, A.1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. TN-1244, Washington, DC.
Dahm, W. J. A. 2005 Effects of heat release on turbulent shear flows. Part 2. Turbulent mixing layers and the equivalence principle. J. Fluid Mech. 540, 119.
Dahm, W. J. A. & Dimotakis, P. E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25 (9), 12161223.
Debisschop, J. R., Chambers, O. & Bonnet, J. P. 1994 Velocity field characteristics in supersonic mixing layers. Exp. Thermal Fluid Sci. 9 (2), 147155.
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24 (11), 17911796.
Dimotakis, P. E. 1991 Turbulent free shear layer mixing and combustion. High Speed Flight Propulsion Systems 137, 265340.
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J. Fluid Mech. 78 (03), 535560.
Ern, A. & Giovangigli, V. 1994 Multicomponent Transport Algorithms, vol. 24. Springer.
Faeth, G. M. & Samuelsen, G. S. 1986 Fast reaction nonpremixed combustion. Prog. Energy Combust. Sci. 12 (4), 305372.
Ferré, J. A., Mumford, J. C., Savill, A. M. & Giralt, F. 1990 Three-dimensional large-eddy motions and fine-scale activity in a plane turbulent wake. J. Fluid Mech. 210, 371414.
Gampert, M., Narayanaswamy, V., Schaefer, P. & Peters, N. 2013 Conditional statistics of the turbulent/non-turbulent interface in a jet flow. J. Fluid Mech. 731, 615638.
Gottlieb, D. & Turkel, E. 1976 Dissipative two-four methods for time-dependent problems. Maths. Comput. 30 (136), 703723.
Hadjadj, A., Yee, H. C. & Sjögreen, B. 2012 Les of temporally evolving mixing layers by an eighth-order filter scheme. Intl J. Numer. Meth. Fluids 70 (11), 14051427.
Haynes, W. M. 2014 CRC Handbook of Chemistry and Physics. CRC Press.
Hazewinkel, M. 2002 Minimal Surface. Encyclopedia of Mathematics. Springer.
Hermanson, J. C. & Dimotakis, P. E. 1989 Effects of heat release in a turbulent, reacting shear layer. J. Fluid Mech. 199, 333375.
Hickey, J., Hussain, F. & Wu, X. 2013 Role of coherent structures in multiple self-similar states of turbulent planar wakes. J. Fluid Mech. 731, 312363.
Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W. & Tsinober, A. 2007 Small-scale aspects of flows in proximity of the turbulent/non-turbulent interface. Phys. Fluids 19 (7), 071702.
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 134503.
Holzner, M. & van Reeuwijk, M. 2017 The turbulent/nonturbulent interface in penetrative convection. J. Turbul. 111.
Hunt, J. C. R., Eames, I., da Silva, C. B. & Westerweel, J. 2011 Interfaces and inhomogeneous turbulence. Phil. Trans. R. Soc. Lond. A 369 (1937), 811832.
Hunt, J. C. R., Eames, I. & Westerweel, J. 2006 Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 554, 499519.
Jahanbakhshi, R.2016 DNS of compressible reacting turbulent shear layer. PhD thesis, State University of New York at Buffalo.
Jahanbakhshi, R. & Madnia, C. K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.
Jahanbakhshi, R., Vaghefi, N. S. & Madnia, C. K. 2015 Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids 27 (10), 105105.
Khashehchi, M., Ooi, A., Soria, J. & Marusic, I. 2013 Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. Exp. Fluids 54 (1), 112.
Kida, S. & Orszag, S. A. 1990 Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5 (2), 85125.
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.
Kritsuk, A. G., Norman, M. L., P., P. & Wagner, R. 2007 The statistics of supersonic isothermal turbulence. Astrophys. J. 665 (1), 416.
Krug, D., Chung, D., Philip, J. & Marusic, I. 2017 Global and local aspects of entrainment in temporal plumes. J. Fluid Mech. 812, 222250.
Krug, D., Holzner, M., Lüthi, B., Wolf, M., Kinzelbach, W. & Tsinober, A. 2015 The turbulent/non-turbulent interface in an inclined dense gravity current. J. Fluid Mech. 765, 303324.
Kundu, P. K., Cohen, I. M. & Dowling, D. R. 2015 Fluid Mechanics, 6th edn. Academic Press.
Kuo, K. K. 2005 Principles of Combustion. John Wiley & Sons.
Lee, J., Sung, H. J. & Zaki, T. A. 2017 Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 819, 165187.
Lee, J. & Zaki, T. A. 2016 Turbulent/non-turbulent interface in transitional and turbulent boundary layers. In 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada, ICTAM.
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.
Livescu, D., Jaberi, F. A. & Madnia, C. K. 2002 The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 3566.
Mahle, I.2007 Direct and large-eddy simulation of inert and reacting compressible turbulent shear layers. PhD thesis, Universität München.
Mahle, I., Foysi, H., Sarkar, S. & Friedrich, R. 2007 On the turbulence structure in inert and reacting compressible mixing layers. J. Fluid Mech. 593, 171180.
Mathew, J. & Basu, A. J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.
Mathew, J., Mahle, I. & Friedrich, R. 2008 Effects of compressibility and heat release on entrainment processes in mixing layers. J. Turbul. (9), N14.
McMurtry, P. A., Riley, J. J. & Metcalfe, R. W. 1989 Effects of heat release on the large-scale structure in turbulent mixing layers. J. Fluid Mech. 199, 297332.
Miller, R. S., Madnia, C. K. & Givi, P. 1995 Numerical simulation of non-circular jets. Comput. Fluids 24 (1), 125.
Mistry, D., Philip, J., Dawson, J. R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234 (1196), 123.
Mungal, M. G., Karasso, P. S. & Lozano, A. 1991 The visible structure of turbulent jet diffusion flames: large-scale organization and flame tip oscillation. Combust. Sci. Technol. 76 (4–6), 165185.
Muniz, L. & Mungal, M. G. 2001 Effects of heat release and buoyancy on flow structure and entrainment in turbulent nonpremixed flames. Combust. Flame 126 (1), 14021420.
O’Brien, J., Urzay, J., Ihme, M., Moin, P. & Saghafian, A. 2014 Subgrid-scale backscatter in reacting and inert supersonic hydrogen–air turbulent mixing layers. J. Fluid Mech. 743, 554584.
Oevermann, M. 2000 Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling. Aerosp. Sci. Technol. 4 (7), 463480.
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.
Pantano, C., Sarkar, S. & Williams, F. A. 2003 Mixing of a conserved scalar in a turbulent reacting shear layer. J. Fluid Mech. 481, 291328.
Pantano-Rubino, C. A.2000 Compressibility effects in turbulent nonpremixed reacting shear flows. PhD thesis, University of California San Diego.
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.
Philip, J., Bermejo-Moreno, I., Chung, D. & Marusic, I.2015 Characteristics of the entrainment velocity in a developing wake. International Symposium on Turbulence and Shear Flow Phenomena, TSFP-9, Melbourne, Australia. TSFP.
Philip, J. & Marusic, I. 2012 Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys. Fluids 24 (5), 055108.
Philip, J., Meneveau, C., de Silva, C. M. & Marusic, I. 2014 Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26 (1), 015105.
Pitsch, H. & Peters, N. 1998 A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114 (1), 2640.
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. RT Edwards.
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Ragab, S. A. & Wu, J. L. 1989 Linear instabilities in two-dimensional compressible mixing layers. Phys. Fluids A 1 (6), 957966.
Redford, J. A., Castro, I. P. & Coleman, G. N. 2012 On the universality of turbulent axisymmetric wakes. J. Fluid Mech. 710, 419452.
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.
van Reeuwijk, M., Krug, D. & Holzner, M. 2018 Small-scale entrainment in inclined gravity currents. Environ. Fluid Mech. 18 (1), 225239.
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11 (01), 2132.
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.
Saghafian, A.2014 High-fidelity simulations and modeling of compressible reacting flows. PhD thesis, Stanford University.
Samimy, M. & Elliott, G. S. 1990 Effects of compressibility on the characteristics of free shear layers. AIAA J. 28, 439445.
Schmidt, W., Federrath, C. & Klessen, R. 2008 Is the scaling of supersonic turbulence universal? Phys. Rev. Lett. 101 (19), 194505.
Sekar, B. & Mukunda, H. S. 1991 A computational study of direct simulation of high speed mixing layers without and with chemical heat release. In Symposium (International) on Combustion, vol. 23, pp. 707713. Elsevier.
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014a Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.
da Silva, C. B. & Pereira, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/non-turbulent interface in jets. Phys. Fluids 20 (5), 5510155101.
da Silva, C. B., dos Reis, R. J. N. & Pereira, J. C. F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.
da Silva, C. B. & Silva, T. S. 2016 High Reynolds numbers scaling of the turbulent/non-turbulent interface. In APS Meeting Abstracts: APS Division of Fluid Dynamics Conference 2016. APS.
da Silva, C. B., Taveira, R. R. & Borrell, G. 2014b Characteristics of the turbulent/non-turbulent interface in boundary layers, jets and shear-free turbulence. J. Phys. 506, 012015.
Soteriou, M. C. & Ghoniem, A. F. 1995 Effects of the free-stream density ratio on free and forced spatially developing shear layers. Phys. Fluids 7 (8), 20362051.
Sutherland, W. 1893 Lii. the viscosity of gases and molecular force. London Edinburgh Dublin Philos. Mag. J. Sci. 36 (223), 507531.
Taveira, R. R., Diogo, J. S., Lopes, D. C. & da Silva, C. B. 2013 Lagrangian statistics across the turbulent/non-turbulent interface in a turbulent plane jet. Phys. Rev. E 88 (4), 043001.
Taveira, R. R. & da Silva, C. B. 2013 Kinetic energy budgets near the turbulent/non-turbulent interface in jets. Phys. Fluids 25 (1), 015114.
Thompson, K. W. 1990 Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89 (2), 439461.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Tritton, D. J. 2012 Physical Fluid Dynamics. Springer.
Tsinober, A. 2000 Vortex stretching versus production of strain/dissipation. Turbul. Struct. Vortex Dyn. 164191.
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence. vol. 483. Springer.
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.
Vaghefi, N. S.2014 Simulation and modeling of compressible turbulent mixing layer. PhD thesis, State University of New York at Buffalo.
Vaghefi, N. S. & Madnia, C. K. 2015 Local flow topology and velocity gradient invariants in compressible turbulent mixing layer. J. Fluid Mech. 774, 6794.
Vaghefi, N. S., Nik, M. B., Pisciuneri, P. H. & Madnia, C. K. 2013 A priori assessment of the subgrid scale viscous/scalar dissipation closures in compressible turbulence. J. Turbul. 14 (9), 4361.
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110 (21), 214505.
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.
Williams, F. A. 1985 Combustion Theory. Benjamin-Cummings.
Wolf, M., Holzner, M., Lüthi, B., Krug, D., Kinzelbach, W. & Tsinober, A. 2013 Effects of mean shear on the local turbulent entrainment process. J. Fluid Mech. 731, 95116.
Yule, A. J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89 (03), 413432.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed