Skip to main content

The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres

  • M. HOROWITZ (a1) and C. H. K. WILLIAMSON (a1)

In this paper, we study the effect of the Reynolds number (Re) on the dynamics and vortex formation modes of spheres rising or falling freely through a fluid (where Re = 100–15000). Since the oscillation of freely falling spheres was first reported by Newton (University of California Press, 3rd edn, 1726, translated in 1999), the fundamental question of whether a sphere will vibrate, as it rises or falls, has been the subject of a number of investigations, and it is clear that the mass ratio m* (defined as the relative density of the sphere compared to the fluid) is an important parameter to define when vibration occurs. Although all rising spheres (m* < 1) were previously found to oscillate, either chaotically or in a periodic zigzag motion or even to follow helical trajectories, there is no consensus regarding precise values of the mass ratio (m*crit) separating vibrating and rectilinear regimes. There is also a large scatter in measurements of sphere drag in both the vibrating and rectilinear regimes.

In our experiments, we employ spheres with 133 combinations of m* and Re, to provide a comprehensive study of the sphere dynamics and vortex wakes occurring over a wide range of Reynolds numbers. We find that falling spheres (m* > 1) always move without vibration. However, in contrast with previous studies, we discover that a whole regime of buoyant spheres rise through a fluid without vibration. It is only when one passes below a critical value of the mass ratio, that the sphere suddenly begins to vibrate periodically and vigorously in a zigzag trajectory within a vertical plane. The critical mass is nearly constant over two ranges of Reynolds number (m*crit ≈ 0.4 for Re = 260–1550 and m*crit ≈ 0.6 for Re > 1550). We do not observe helical or spiral trajectories, or indeed chaotic types of trajectory, unless the experiments are conducted in disturbed background fluid. The wakes for spheres moving rectilinearly are comparable with wakes of non-vibrating spheres. We find that these wakes comprise single-sided and double-sided periodic sequences of vortex rings, which we define as the ‘R’ and ‘2R’ modes. However, in the zigzag regime, we discover a new ‘4R’ mode, in which four vortex rings are created per cycle of oscillation. We find a number of changes to occur at a Reynolds number of 1550, and we suggest the possibility of a resonance between the shear layer instability and the vortex shedding (loop) instability. From this study, ensuring minimal background disturbances, we have been able to present a new regime map of dynamics and vortex wake modes as a function of the mass ratio and Reynolds number {m*, Re}, as well as a reasonable collapse of the drag measurements, as a function of Re, onto principally two curves, one for the vibrating regime and one for the rectilinear trajectories.

Corresponding author
Email address for correspondence:
Hide All
Allen, H. S. 1900 The motion of a sphere in a viscous fluid: III. Phil. Mag. 50, 519534.
Bacon, D. L. & Reid, E. G. 1923 The resistance of spheres in wind tunnels and in air. Tech. Rep. No. 185. NACA.
Bloor, M. S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19, 290304.
Boillat, J. L. & Graf, W. H. 1981 Settling velocity of spherical particles in calm water. J. Hydraul. Div. ASCE 107, 11231131.
Bouchet, G., Mebarek, M. & Dušek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. B 25, 321336.
Brücker, C. 1999 Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys. Fluids 11, 17811796.
Brücker, C. 2001 Spatio-temporal reconstruction of vortex dynamics in axisymmetric wakes. J. Fluids Struct. 15, 543554.
Christiansen, E. B. & Barker, D. H. 1965 The effect of shape and density on the free settling of particles at high Reynolds numbers. AIChE J. 11, 145151.
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702.
Fernandes, P. C., Risso, F., Ern, P. & Magnaudet, J. 2007 Oscillatory motion and wake instability of freely rising axisymmetric bodies. J. Fluid Mech. 573, 479502.
Flemming, F. & Williamson, C. H. K. 2005 Vortex-induced vibrations of a pivoted cylinder. J. Fluid Mech. 522, 215252.
Goldburg, A. & Florsheim, B. H. 1966 Transition and Strouhal number for the incompressible wake of various bodies. Phys. Fluids 9, 4550.
Govardhan, R. & Williamson, C. H. K. 2000 Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130.
Govardhan, R. & Williamson, C. H. K. 2002 Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration. J. Fluid Mech. 473, 147166.
Govardhan, R. N. & Williamson, C. H. K. 2005 Vortex-induced vibrations of a sphere. J. Fluid Mech. 531, 1147.
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfried, J. E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77, 055308.
Hartman, M. & Yates, J. G. 1993 Free-fall of solid particles through fluids. Collect. Czech. Chem. Commun. 58, 961982.
Hirsch, P. 1923 Über die Bewegung von Kugeln in ruhenden Flüssigkeiten. Z. Angew. Math. Mech. 3, 93107.
Horowitz, M. & Williamson, C. H. K. 2006 Dynamics of a rising and falling cylinder. J. Fluids Struct. 22, 837843.
Horowitz, M. & Williamson, C. H. K. 2008 Critical mass and a new periodic four-ring vortex wake mode for freely rising and falling spheres. Phys. Fluids 20, 101701.
Horowitz, M. & Williamson, C. H. K. Vortex-induced vibration of a rising and falling cylinder. J. Fluid Mech. (submitted).
Jauvtis, N. & Williamson, C. H. K. 2004 The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 2362.
Jenny, M., Dušek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 709720.
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.
Karamanev, D. G., Chavarie, C. & Mayer, R. C. 1996 Dynamics of the free rise of a light solid sphere in liquid. AIChE J. 42, 17891792.
Kim, D., Choi, H. & Choi, H. 2005 Characteristics of laminar flow past a sphere in uniform shear. Phys. Fluids 17, 103602.
Kim, H. J. & Durbin, P. A. 1988 Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys. Fluids 31, 32603265.
Kuwabara, G., Chiba, S. & Kono, K. 1983 Anomalous motion of a sphere falling through water. J. Phys. Soc. Japan 52, 33733381.
Lee, S. 2000 A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers. Comput. Fluids 29, 639667.
Leweke, T., Provansal, M., Ormieres, D. & Lebescond, R. 1999 Vortex dynamics in the wake of a sphere. Phys. Fluids 11, S12.
Liebster, H. 1927 Über den Widerstand von Kugeln. Ann. Phys. 82, 541562.
Lunnon, R. G. 1926 Fluid resistance to moving spheres. Proc. R. Soc. Lond. A 110, 302326.
Lunnon, R. G. 1928 Fluid resistance to moving spheres. Proc. R. Soc. Lond. A 118, 680694.
MacCready, P. B. & Jex, H. R. 1964 Study of sphere motion and balloon wind sensors. Tech. Rep. Tech. Mem. X53089. NASA.
Magarvey, R. H. & Bishop, R. L. 1961 a Transition ranges for three-dimensional wakes. Can. J. Phys. 39, 14181422.
Magarvey, R. H. & Bishop, R. L. 1961 b Wakes in liquid-liquid systems. Phys. Fluids 4, 800805.
Magnaudet, J. & Eames, I. 2000 The motion of high Reynolds number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.
Mittal, R. 1999 A Fourier-Chebyshev spectral collocation method for simulating flow past spheres and spheroids. Intl J. Numer. Methods Fluids 30, 921937.
Mittal, R., Wilson, J. J. & Najjar, F. M. 2002 Symmetry properties of the transitional sphere wake. AIAA J. 40, 579582.
Möller, W. 1938 Experimentelle Untersuchungen zur Hydrodynamik der Kugel. Physik. Zeit. 39, 5880.
Mougin, G. & Magnaudet, J. 2002 Wake-induced forces and torques on a zigzagging/spiralling bubble. Phys. Rev. Lett 88, 014502.
Mougin, G. & Magnaudet, J. 2006 Path instability of a rising bubble. J. Fluid Mech. 567, 185194.
Murrow, H. N. & Henry, R. M. 1965 Self-induced balloon motions. J. Appl. Meteorol. 4, 131138.
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.
Newton, I. 1726 Philosophia Naturalis Principia Mathematica, 3rd edn. Translated by Cohen, I. B. and Whitman, A., University of California Press, 1999.
Prasad, A. & Williamson, C. H. K. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.
Preukschat, A. W. 1962 Measurements of drag coefficients for falling and rising spheres in free motion. Master's thesis, California Institute of Technology, Pasadena, CA.
Quinn, J. A., Lin, C. H. & Anderson, J. L. 1986 Measuring diffusion coefficients by Taylor's method of hydrodynamic stability. AIChE J. 32, 20282033.
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidisation: part I. Trans. Inst. Chem. Engrs 32, 3553.
Sakamoto, H. & Haniu, H. 1990 A study on vortex shedding from spheres in a uniform flow. J. Fluids Engng 112, 386392.
Schlichting, H. 1955 Boundary Layer Theory. McGraw-Hill.
Schmidt, F. S. 1920 Zur beschleunigten Bewegung kugelförmiger Körper in widerstehenden Mitteln. J. Fluid Mech. 61, 633663.
Schmiedel, J. 1928 Experimentelle Untersuchungen über die Fallbewegung von Kugeln und Scheiben in reibenden Flüssigkeiten. Physik. Zeit. 17, 593610.
Scoggins, J. R. 1964 Aerodynamics of spherical balloon wind sensors. J. Geophys. Res. 69, 591598.
Shafrir, U. 1965 Horizontal oscillations of falling spheres. Tech. Rep. AFCRL 65-141. Air Force Cambridge Research Laboratories.
Shakespear, G. A. 1914 Experiments on the resistance of the air to falling spheres. Phil. Mag. Ser. 6 28, 728734.
Stringham, G. E., Simons, D. B. & Guy, H. P. 1969 The behaviour of large particles falling in quiescent liquids. US Geological Survey Professional Paper 562C.
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and turbulent flow past a sphere. J. Fluid Mech. 416, 4573.
Veldhuis, C. & Biesheuvel, A. 2007 An experimental study of the regimes of motion of spheres falling or ascending freely in a Newtonian fluid. Intl J. Multiph. Flow 33, 10741087.
Veldhuis, C. H. J., Biesheuvel, A. & Lohse, D. 2009 Freely rising light solid spheres. Intl J. Multiph. Flow 35, 312322.
Veldhuis, C., Biesheuvel, A., van Wijngaarden, L. & Lohse, D. 2005 Motion and wake structure of spherical particles. Nonlinearity 18, C1C8.
Wieselsberger, C. 1921 Neuere Feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstandes. Physik. Zeit. 22, 321328.
Williamson, C. H. K. & Govardhan, R. N. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355381.
Wu, M. & Gharib, M. 2002 Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids 14, L49L52.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed