Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T18:08:22.086Z Has data issue: false hasContentIssue false

Effect of thermal fluctuations on spectra and predictability in compressible decaying isotropic turbulence

Published online by Cambridge University Press:  21 May 2024

Qihan Ma
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Chunxin Yang
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Song Chen
Affiliation:
Sino-French Engineer School/School of General Engineering, Beihang University, Beijing 100191, PR China
Kaikai Feng
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Ziqi Cui
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Jun Zhang*
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
*
Email address for correspondence: jun.zhang@buaa.edu.cn

Abstract

This study investigates the impact of molecular thermal fluctuations on compressible decaying isotropic turbulence using the unified stochastic particle (USP) method, encompassing both two-dimensional (2-D) and three-dimensional (3-D) scenarios. The findings reveal that the turbulent spectra of velocity and thermodynamic variables follow the wavenumber (k) scaling law of ${k}^{(d-1)}$ for different spatial dimensions $d$ within the high wavenumber range, indicating the impact of thermal fluctuations on small-scale turbulent statistics. With the application of Helmholtz decomposition, it is found that the thermal fluctuation spectra of solenoidal and compressible velocity components (${\boldsymbol {u}}_{s}$ and ${\boldsymbol {u}}_{c}$) follow an energy ratio of 1 : 1 for 2-D cases, while the ratio changes to 2 : 1 for 3-D cases. Comparisons between 3-D turbulent spectra obtained through USP simulations and direct numerical simulations of the Navier–Stokes equations demonstrate that thermal fluctuations dominate the spectra at length scales comparable to the Kolmogorov length scale. Additionally, the effect of thermal fluctuations on the spectrum of ${\boldsymbol {u}}_{c}$ is significantly influenced by variations in the turbulent Mach number. We further study the impact of thermal fluctuations on the predictability of turbulence. With initial differences caused by thermal fluctuations, different flow realizations display significant disparities in velocity and thermodynamic fields at larger scales after a certain period of time, which can be characterized by ‘inverse error cascades’. Moreover, the results suggest a strong correlation between the predictabilities of thermodynamic fields and the predictability of ${\boldsymbol {u}}_{c}$.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, F.J., Garcia, A.L. & Alder, B.J. 1998 Cell size dependence of transport coefficients in stochastic particle algorithms. Phys. Fluids 10 (6), 15401542.CrossRefGoogle Scholar
Balsara, D.S. & Shu, C.-W. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160 (2), 405452.CrossRefGoogle Scholar
Bandak, D., Goldenfeld, N., Mailybaev, A.A. & Eyink, G. 2022 Dissipation-range fluid turbulence and thermal noise. Phys. Rev. E 105 (6), 065113.CrossRefGoogle ScholarPubMed
Bell, J.B., Nonaka, A., Garcia, A.L. & Eyink, G. 2022 Thermal fluctuations in the dissipation range of homogeneous isotropic turbulence. J. Fluid Mech. 939, A12.CrossRefGoogle Scholar
Berera, A. & Ho, R.D.J.G. 2018 Chaotic properties of a turbulent isotropic fluid. Phys. Rev. Lett. 120 (2), 024101.CrossRefGoogle ScholarPubMed
Betchov, R. 1957 On the fine structure of turbulent flows. J. Fluid Mech. 3 (2), 205216.CrossRefGoogle Scholar
Betchov, R. 1961 Thermal agitation and turbulence. In Rarefied Gas Dynamics, Proceedings of the Second International Symposium on Rarefied Gas Dynamics (ed. L. Talbot), pp. 307–321. Academic Press.Google Scholar
Betchov, R. 1964 Measure of the intricacy of turbulence. Phys. Fluids 7 (8), 11601162.CrossRefGoogle Scholar
Bhatnagar, P.L., Gross, E.P. & Krook, M. 1954 A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.CrossRefGoogle Scholar
Boffetta, G., Celani, A., Crisanti, A. & Vulpiani, A. 1997 Predictability in two-dimensional decaying turbulence. Phys. Fluids 9 (3), 724734.CrossRefGoogle Scholar
Boffetta, G. & Musacchio, S. 2017 Chaos and predictability of homogeneous-isotropic turbulence. Phys. Rev. Lett. 119 (5), 054102.CrossRefGoogle ScholarPubMed
Bos, W.J.T., Chahine, R. & Pushkarev, A.V. 2015 On the scaling of temperature fluctuations induced by frictional heating. Phys. Fluids 27 (9), 095105.CrossRefGoogle Scholar
Buaria, D. & Sreenivasan, K.R. 2020 Dissipation range of the energy spectrum in high Reynolds number turbulence. Phys. Rev. Fluids 5 (9), 092601.CrossRefGoogle Scholar
Cao, G., Pan, L. & Xu, K. 2019 Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence. 1. Criterion for direct numerical simulation. Comput. Fluids 192, 104273.CrossRefGoogle Scholar
Chen, S., Doolen, G., Herring, J.R., Kraichnan, R.H., Orszag, S.A. & She, Z.S. 1993 Far-dissipation range of turbulence. Phys. Rev. Lett. 70 (20), 30513054.CrossRefGoogle ScholarPubMed
Chen, T., Wen, X., Wang, L.-P., Guo, Z., Wang, J. & Chen, S. 2020 Simulation of three-dimensional compressible decaying isotropic turbulence using a redesigned discrete unified gas kinetic scheme. Phys. Fluids 32 (12), 125104.CrossRefGoogle Scholar
Corrsin, S. 1959 Outline of some topics in homogeneous turbulent flow. J. Geophys. Res. 64 (12), 21342150.CrossRefGoogle Scholar
Dorfman, J.R. & Cohen, E.G.D. 1970 Velocity correlation functions in two and three dimensions. Phys. Rev. Lett. 25 (18), 12571260.CrossRefGoogle Scholar
Eyink, G. & Jafari, A. 2022 High Schmidt-number turbulent advection and giant concentration fluctuations. Phys. Rev. Res. 4 (2), 023246.CrossRefGoogle Scholar
Fei, F. 2023 A time-relaxed Monte Carlo method preserving the Navier–Stokes asymptotics. J. Comput. Phys. 486, 112128.CrossRefGoogle Scholar
Fei, F. & Jenny, P. 2021 A hybrid particle approach based on the unified stochastic particle Bhatnagar-Gross-Krook and DSMC methods. J. Comput. Phys. 424, 109858.CrossRefGoogle Scholar
Fei, F., Liu, H., Liu, Z. & Zhang, J. 2020 a A benchmark study of kinetic models for shock waves. AIAA J. 58 (6), 25962608.CrossRefGoogle Scholar
Fei, F., Ma, Y., Wu, J. & Zhang, J. 2021 An efficient algorithm of the unified stochastic particle Bhatnagar-Gross-Krook method for the simulation of multi-scale gas flows. Adv. Aerodynam. 3 (1), 18.CrossRefGoogle Scholar
Fei, F., Zhang, J., Li, J. & Liu, Z. 2020 b A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows. J. Comput. Phys. 400, 108972.CrossRefGoogle Scholar
Feng, K., Tian, P., Zhang, J., Fei, F. & Wen, D. 2023 SPARTACUS: an open-source unified stochastic particle solver for the simulation of multiscale nonequilibrium gas flows. Comput. Phys. Commun. 284, 108607.CrossRefGoogle Scholar
Gallis, M.A., Bitter, N.P., Koehler, T.P., Torczynski, J.R., Plimpton, S.J. & Papadakis, G. 2017 Molecular-level simulations of turbulence and its decay. Phys. Rev. Lett. 118 (6), 064501.CrossRefGoogle ScholarPubMed
Gallis, M.A. & Torczynski, J. 2000 The application of the BGK model in particle simulations. In 34th Thermophysics Conference, p. 2360. AIAA.CrossRefGoogle Scholar
Gallis, M.A., Torczynski, J.R., Bitter, N.P., Koehler, T.P., Plimpton, S.J. & Papadakis, G. 2018 Gas-kinetic simulation of sustained turbulence in minimal Couette flow. Phys. Rev. Fluids 3 (7), 071402.CrossRefGoogle Scholar
Gallis, M.A., Torczynski, J.R., Krygier, M.C., Bitter, N.P. & Plimpton, S.J. 2021 Turbulence at the edge of continuum. Phys. Rev. Fluids 6 (1), 013401.CrossRefGoogle Scholar
Hadjiconstantinou, N.G. 2000 Analysis of discretization in the direct simulation Monte Carlo. Phys. Fluids 12 (10), 26342638.CrossRefGoogle Scholar
Hadjiconstantinou, N.G., Garcia, A.L., Bazant, M.Z. & He, G. 2003 Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187 (1), 274297.CrossRefGoogle Scholar
Herring, J.R., Orszag, S.A., Kraichnan, R.H. & Fox, D.G. 1974 Decay of two-dimensional homogeneous turbulence. J. Fluid Mech. 66 (3), 417444.CrossRefGoogle Scholar
Ishiko, K., Ohnishi, N., Ueno, K. & Sawada, K. 2009 Implicit large eddy simulation of two-dimensional homogeneous turbulence using weighted compact nonlinear scheme. J. Fluids Engng 131 (6), 061401.CrossRefGoogle Scholar
Jaberi, F.A., Livescu, D. & Madnia, C.K. 2000 Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12 (5), 11891209.CrossRefGoogle Scholar
Jenny, P., Torrilhon, M. & Heinz, S. 2010 A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion. J. Comput. Phys. 229 (4), 10771098.CrossRefGoogle Scholar
Kadanoff, L.P., McNamara, G.R. & Zanetti, G. 1989 From automata to fluid flow: comparisons of simulation and theory. Phys. Rev. A 40 (8), 45274541.CrossRefGoogle ScholarPubMed
Kida, S., Yamada, M. & Ohkitani, K. 1990 Error growth in a decaying two-dimensional turbulence. J. Phys. Soc. Japan 59 (1), 90100.CrossRefGoogle Scholar
Kraichnan, R.H. 1967 Intermittency in the very small scales of turbulence. Phys. Fluids 10 (9), 20802082.CrossRefGoogle Scholar
Kraichnan, R.H. 1971 Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47 (3), 525535.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1959 Fluid Mechanics, Course of Theoretical Physics, vol. 6. Pergamon Press.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1980 Statistical Physics, Part 1. Pergamon Press.Google Scholar
Lee, K., Yu, D. & Girimaji, S.S. 2006 Lattice Boltzmann DNS of decaying compressible isotropic turbulence with temperature fluctuations. Intl J. Comput. Fluid Dyn. 20 (6), 401413.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lifshitz, E.M. & Pitaevskii, L.P. 1980 Statistical Physics, Part 2. Pergamon Press.Google Scholar
Lorenz, E.N. 1969 The predictability of a flow which possesses many scales of motion. Tellus 21 (3), 289307.CrossRefGoogle Scholar
Luchini, P. 2016 Receptivity to thermal noise of the boundary layer over a swept wing. AIAA J. 55 (1), 121130.CrossRefGoogle Scholar
Ma, Q., Yang, C., Bruno, D. & Zhang, J. 2021 Molecular simulation of Rayleigh-Brillouin scattering in binary gas mixtures and extraction of the rotational relaxation numbers. Phys. Rev. E 104 (3), 035109.CrossRefGoogle ScholarPubMed
Ma, Q., Yang, C., Chen, S., Feng, K. & Zhang, J. 2023 Effect of thermal fluctuations on homogeneous compressible turbulence. Adv. Aerodynam. 5 (1), 3.CrossRefGoogle Scholar
McMullen, R., Krygier, M., Torczynski, J. & Gallis, M.A. 2022 a Gas-kinetic simulations of compressible turbulence over a mean-free-path-scale porous wall. In AIAA SCITECH 2022 Forum, p. 1058. AIAA.CrossRefGoogle Scholar
McMullen, R.M., Krygier, M.C., Torczynski, J.R. & Gallis, M.A. 2022 b Navier–Stokes equations do not describe the smallest scales of turbulence in gases. Phys. Rev. Lett. 128 (11), 114501.CrossRefGoogle Scholar
McMullen, R.M., Torczynski, J.R. & Gallis, M.A. 2023 Thermal-fluctuation effects on small-scale statistics in turbulent gas flow. Phys. Fluids 35 (1), 011705.CrossRefGoogle Scholar
Métais, O. & Lesieur, M. 1986 Statistical predictability of decaying turbulence. J. Atmos. Sci. 43 (9), 857870.2.0.CO;2>CrossRefGoogle Scholar
Moser, R.D. 2006 On the validity of the continuum approximation in high Reynolds number turbulence. Phys. Fluids 18 (7), 078105.CrossRefGoogle Scholar
Pan, L., Xu, K., Li, Q. & Li, J. 2016 An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 326, 197221.CrossRefGoogle Scholar
Pfeiffer, M. 2018 Particle-based fluid dynamics: comparison of different Bhatnagar-Gross-Krook models and the direct simulation Monte Carlo method for hypersonic flows. Phys. Fluids 30 (10), 106106.CrossRefGoogle Scholar
Plimpton, S.J., Moore, S.G., Borner, A., Stagg, A.K., Koehler, T.P., Torczynski, J.R. & Gallis, M.A. 2019 Direct simulation Monte Carlo on petaflop supercomputers and beyond. Phys. Fluids 31 (8), 086101.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Praturi, D.S. & Girimaji, S.S. 2019 Effect of pressure-dilatation on energy spectrum evolution in compressible turbulence. Phys. Fluids 31 (5), 055114.CrossRefGoogle Scholar
Pushkarev, A., Balarac, G. & Bos, W.J.T. 2017 Reynolds and Prandtl number scaling of viscous heating in isotropic turbulence. Phys. Rev. Fluids 2 (8), 084606.CrossRefGoogle Scholar
Pushkarev, A.V. & Bos, W.J.T. 2014 Depletion of nonlinearity in two-dimensional turbulence. Phys. Fluids 26 (11), 115102.CrossRefGoogle Scholar
Qi, Y., Chen, T., Wang, L.-P., Guo, Z. & Chen, S. 2022 An efficient discrete unified gas-kinetic scheme for compressible turbulence. Phys. Fluids 34 (11), 116101.CrossRefGoogle Scholar
Qin, S. & Liao, S. 2022 Large-scale influence of numerical noises as artificial stochastic disturbances on a sustained turbulence. J. Fluid Mech. 948, A7.CrossRefGoogle Scholar
Ristorcelli, J.R. & Blaisdell, G.A. 1997 Consistent initial conditions for the DNS of compressible turbulence. Phys. Fluids 9 (1), 46.CrossRefGoogle Scholar
Ruelle, D. 1979 Microscopic fluctuations and turbulence. Phys. Lett. A 72A (2), 8182.CrossRefGoogle Scholar
Samtaney, R., Pullin, D.I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13 (5), 14151430.CrossRefGoogle Scholar
Shakhov, E.M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.CrossRefGoogle Scholar
Smith, E.R. 2015 A molecular dynamics simulation of the turbulent Couette minimal flow unit. Phys. Fluids 27 (11), 115105.CrossRefGoogle Scholar
Terakado, D. & Hattori, Y. 2014 Density distribution in two-dimensional weakly compressible turbulence. Phys. Fluids 26 (8), 085105.CrossRefGoogle Scholar
Todorova, B.N. & Steijl, R. 2019 Derivation and numerical comparison of Shakhov and Ellipsoidal Statistical kinetic models for a monoatomic gas mixture. Eur. J. Mech. B/Fluids 76, 390402.CrossRefGoogle Scholar
Wagner, W. 1992 A convergence proof for bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66 (3), 10111044.CrossRefGoogle Scholar
Wang, J., Gotoh, T. & Watanabe, T. 2017 Spectra and statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2 (1), 013403.CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L.-P., Xiao, Z., He, X.T. & Chen, S. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.CrossRefGoogle Scholar
Wang, J., Wang, L.P., Xiao, Z., Shi, Y. & Chen, S. 2010 A hybrid numerical simulation of isotropic compressible turbulence. J. Comput. Phys. 229 (13), 52575279.CrossRefGoogle Scholar
Xu, K. 2001 A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171 (1), 289335.CrossRefGoogle Scholar
Yao, S., Fei, F., Luan, P., Jun, E. & Zhang, J. 2023 Extension of the Shakhov Bhatnagar–Gross–Krook model for nonequilibrium gas flows. Phys. Fluids 35 (3), 037102.CrossRefGoogle Scholar
Zhang, J. & Fan, J. 2009 Monte Carlo simulation of thermal fluctuations below the onset of Rayleigh–Bénard convection. Phys. Rev. E 79 (5), 056302.CrossRefGoogle ScholarPubMed