Skip to main content
×
×
Home

The effective diffusivity of ordered and freely evolving bubbly suspensions

  • Aurore Loisy (a1), Aurore Naso (a1) and Peter D. M. Spelt (a1)
Abstract

We investigate the dispersion of a passive scalar such as the concentration of a chemical species, or temperature, in homogeneous bubbly suspensions, by determining an effective diffusivity tensor. Defining the longitudinal and transverse components of this tensor with respect to the direction of averaged bubble rise velocity in a zero mixture velocity frame of reference, we focus on the convective contribution thereof, this being expected to be dominant in commonly encountered bubbly flows. We first extend the theory of Koch et al. (J. Fluid Mech., vol. 200, 1989, pp. 173–188) (which is for dispersion in fixed beds of solid particles under Stokes flow) to account for weak inertial effects in the case of ordered suspensions. In the limits of low and of high Péclet number, including the inertial effect of the flow does not affect the scaling of the effective diffusivity with respect to the Péclet number. These results are confirmed by direct numerical simulations performed in different flow regimes, for spherical or very deformed bubbles and from vanishingly small to moderate values of the Reynolds number. Scalar transport in arrays of freely rising bubbles is considered by us subsequently, using numerical simulations. In this case, the dispersion is found to be convectively enhanced at low Péclet number, like in ordered arrays. At high Péclet number, the Taylor dispersion scaling obtained for ordered configurations is replaced by one characterizing a purely mechanical dispersion, as in random media, even if the level of disorder is very low.

Copyright
References
Hide All
Aboulhasanzadeh, B. & Tryggvason, G. 2014 Effect of bubble interactions on mass transfer in bubbly flow. Intl J. Heat Mass Transfer 79, 390396.
Acrivos, A., Hinch, E. J. & Jeffrey, D. J. 1980 Heat transfer to a slowly moving fluid from a dilute fixed bed of heated spheres. J. Fluid Mech. 101, 403421.
Alméras, E., Risso, F., Roig, V., Cazin, S., Plais, C. & Augier, F. 2015 Mixing by bubble-induced turbulence. J. Fluid Mech. 776, 458474.
Batchelor, G. K. 1974 Transport properties of two-phase materials with random structure. Annu. Rev. Fluid Mech. 6, 227255.
Batchelor, G. K. & O’Brien, R. W. 1977 Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A 355, 313333.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A 297 (1430), 81133.
Brenner, H. & Adler, P. M. 1982 Dispersion resulting from flow through spatially periodic porous media. Part II. Surface and intraparticle transport. Phil. Trans. R. Soc. Lond. A 307 (1498), 149200.
Brenner, H. & Cox, R. G. 1963 The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17 (4), 561595.
Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466, 1752.
Chorin, A 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745762.
Colombet, D., Legendre, D., Cockx, A., Guiraud, P., Risso, F., Daniel, C. & Galinat, S. 2011 Experimental study of mass transfer in a dense bubble swarm. Chem. Engng Sci. 66 (14), 34323440.
Colombet, D., Legendre, D., Risso, F., Cockx, A. & Guiraud, P. 2015 Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction. J. Fluid Mech. 763, 254285.
Deckwer, W.-D. 1992 Bubble Column Reactors. Wiley.
Hadamard, J. 1911 Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux. Comptes Rend. l’Acad. Sci. 152 (25), 17351738.
Harfield, N. 1999 Conductivity calculation for a two-phase composite with spheroidal inclusions. J. Phys. D 32 (10), 11041113.
Hewitt, G. F., Shires, G. L. & Bott, T. R. 1994 Process Heat Transfer. CRC Press.
Hinch, E. J. 1977 An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83 (4), 695720.
Jeffrey, D. J. 1973 Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A 335 (1602), 355367.
Koch, D. L. & Brady, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427.
Koch, D. L. & Brady, J. F. 1987 The symmetry properties of the effective diffusivity tensor in anisotropic porous media. Phys. Fluids 30 (3), 642650.
Koch, D. L., Cox, R. G., Brenner, H. & Brady, J. F. 1989 The effect of order on dispersion in porous media. J. Fluid Mech. 200, 173188.
Kushch, V. I. 1997 Conductivity of a periodic particle composite with transversely isotropic phases. Proc. R. Soc. Lond. A 453 (1956), 6576.
Loisy, A.2016 Direct numerical simulation of bubbly flows: coupling with scalar transport and turbulence. PhD thesis, Université de Lyon.
Loisy, A., Naso, A. & Spelt, P. D. M. 2017 Buoyancy-driven bubbly flows: ordered and free rise at small and intermediate volume fraction. J. Fluid Mech. 816, 94141.
Mareuge, I. & Lance, M. 1995 Bubble induced dispersion of a passive scalar in bubbly flows. In Proceedings of the 2nd International Conference on Multiphase Flow, pp. PT1–3–8.
Maxwell, J. C. 1873 A Treatise on Electricity and Magnetism. Clarendon Press.
Rayleigh, R. S. 1892 LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag. 5 34 (211), 481502.
Russo, G. & Smereka, P. 2000 A remark on computing distance functions. J. Comput. Phys. 163 (1), 5167.
Rybczynski, W. 1911 Über die fortschreitende Bewegung einer flüssigen Kugel in einen zähen Medium. Bull. Intl l’Acad. Sci. Cracovie A 1, 4046.
Sabelnikov, V., Ovsyannikov, A. Y. & Gorokhovski, M. 2014 Modified level set equation and its numerical assessment. J. Comput. Phys. 278, 130.
Sangani, A. S. & Acrivos, A. 1983 The effective conductivity of a periodic array of spheres. Proc. R. Soc. Lond. A 386 (1791), 263275.
Sussman, M., Smereka, P. & Osher, S. 1994 A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1), 146159.
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. s2‐20 (1), 196212.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 19
Total number of PDF views: 138 *
Loading metrics...

Abstract views

Total abstract views: 243 *
Loading metrics...

* Views captured on Cambridge Core between 9th February 2018 - 16th August 2018. This data will be updated every 24 hours.