Skip to main content
×
Home
    • Aa
    • Aa

Effective velocity boundary condition at a mixed slip surface

  • M. SBRAGAGLIA (a1) and A. PROSPERETTI (a1) (a2)
Abstract

This paper studies the nature of the effective velocity boundary condition for liquid flow over a plane boundary on which small free-slip islands are randomly distributed. It is found that an effective Navier partial-slip condition for the velocity emerges from a statistical analysis valid for arbitrary fractional area coverage β. As an example, the general theory is applied to the low-β limit and this result is extended heuristically to finite β with a resulting slip length proportional to aβ/(1 − β), where a is a characteristic size of the islands. A specification of the nature of the free-slip islands is not required in the analysis. They could be nano-bubbles, as suggested by recent experiments, or hydrophobic surface patches. The results are also relevant for ultra-hydrophobic surfaces exploiting the so-called ‘lotus effect’.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Tretheway & C. Meinhart 2002 Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9L12.

V. Twersky 1957 On scattering and reflection of sound by rough surfaces. J. Acoust. Soc. Am. 29, 209225.

R. Pit , H. Hervet & L. Léger 2000 Direct experimental evidence of slip in hexadecane: Solid interfaces. Phys. Rev. Lett. 85, 980983.

S. Kim & S. Karrila 1991 Microhydrodynamics. Butterworth-Heinemann.

L. Foldy 1945 The multiple scattering of waves. Phys. Rev. 67, 107119.

J. Ou & P. Rothstein 2005 Direct velocity measurement of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17, 103606.

M. Sbragaglia , R. Benzi , L. Biferale , S. Succi & F. Toschi 2006 Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows. Phys. Rev. Lett. 97, 204503.

P. Joseph , C. Cottin-Bizonne , J.-M. Benoit , C. Ybert , C. Journet , P. Tabeling & L. Bocquet 2006 Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97, 156104.

J. R. Philip 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23, 353370.

A. M. J. Davis 1991 Shear flow disturbance due to a hole in the plane. Phys. Fluids A 3, 478480.

A. C. Simonsen , P. L. Hansen & B. Klosgen 2004 Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J. Colloid Interface Sci. 273, 291299.

S. M. Dammer & D. Lohse 2006 Gas enrichment at liquid-wall interfaces. Phys. Rev. Lett. 96, 206101.

W. Barthlott & C. Neinhaus 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.

D. M. Tartakovsky & D. B. Xiu 2006 Stochastic analysis of transport in tubes with rough walls. J. Comput. Phys. 217, 248259.

Y. Zhu & S. Granick 2002 Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88, 106102.

Y. Zhu & S. Granick 2001 Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87, 096105.

C. Neto , D. R. Evans , E. Bonaccurso , H. J. Butt & V. S. J. Craig 2005 Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–897.

J. Ou , B. Perot & P. Rothstein 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16, 46354643.

C. Pozrikidis 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.

J. Rubinstein & J. Keller 1989 Sedimentation of a dilute suspension. Phys. Fluids A 1, 637643.

J. W. G. Tyrrell & P. Attard 2001 Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87, 176104.

O. I. Vinogradova 1999 Slippage of water over hydrophobic surfaces. Intl J. Mineral Proc. 56, 3160.

K. Watanabe , Yanuar & H. Udagawa 1999 Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225238.

Z. Wu , X. Zhang , X. Zhang , G. Li , J. Sun , M. Zhang & J. Hu 2005 Nanobubbles influence on BSA adsorption on mica surface. Surface Interface Anal. 37, 797801.

C. H. Choi & C. J. Kim 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96, 066001.

V. S. J. Craig , C. Neto & D. R. M. Williams 2001 Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87, 054504.

M. Holmberg , A. Kühle , J. Garnaes , K. A. Mörch & A. Boisen 2003 Nanobubble trouble on gold surfaces. Langmuir 19, 10,51010,513.

N. Ishida , T. Inoue , M. Miyahara & K. Higashitani 2000 Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16, 63776380.

W. Jäger & A. Mikeli'c 2001 On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Diffl Equat. 170, 96122.

E. Lauga & H. A. Stone 2003 Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489, 5577.

K. B. Ranger 1978 The circular disc straddling the interface of a two phase flow. Intl J. Multiphase Flow 4, 263277.

K. Sarkar & A. Prosperetti 1995 Effective boundary conditions for the Laplace equation with a rough boundary. Proc. R. Soc. Lond. A 451, 425452.

K. Sarkar & A. Prosperetti 1996 Effective boundary conditions for Stokes flow over a rough surface. J. Fluid Mech. 316, 223240.

S. H. Smith 1987 Stokes flows past slits and holes. Intl J. Multiphase Flow 13, 219231.

R. Steitz , T. Gutberlet , T. Hauss , B. Klösgen , R. Krastev , S. Schemmel , A. C. Simonsen & G. H. Findenegg 2003 Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19, 24092418.

V. Twersky 1983 Reflection and scattering of sound by correlated rough surfaces. J. Acoust. Soc. Am. 73, 8594.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 28 *
Loading metrics...

Abstract views

Total abstract views: 86 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th March 2017. This data will be updated every 24 hours.