Skip to main content
×
Home
    • Aa
    • Aa

Effects of flexibility on the aerodynamic performance of flapping wings

  • C.-K. Kang (a1), H. Aono (a1), C. E. S. Cesnik (a1) and W. Shyy (a1) (a2)
Abstract
Abstract

Effects of chordwise, spanwise, and isotropic flexibility on the force generation and propulsive efficiency of flapping wings are elucidated. For a moving body immersed in viscous fluid, different types of forces, as a function of the Reynolds number, reduced frequency (k), and Strouhal number (St), acting on the moving body are identified based on a scaling argument. In particular, at the Reynolds number regime of and the reduced frequency of , the added mass force, related to the acceleration of the wing, is important. Based on the order of magnitude and energy balance arguments, a relationship between the propulsive force and the maximum relative wing-tip deformation parameter () is established. The parameter depends on the density ratio, St, k, natural and flapping frequency ratio, and flapping amplitude. The lift generation, and the propulsive efficiency can be deduced by the same scaling procedures. It seems that the maximum propulsive force is obtained when flapping near the resonance, whereas the optimal propulsive efficiency is reached when flapping at about half of the natural frequency; both are supported by the reported studies. The established scaling relationships can offer direct guidance for micro air vehicle design and performance analysis.

Copyright
Corresponding author
Email address for correspondence: weishyy@ust.hk
References
Hide All
2. A. Azuma 2006 The Biokinetics of Flying and Swimming, 2nd edn. AIAA.

5. S. Balay , W. D. Gropp , L. C. McInnes & B. F. Smith 1997 Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools for Scientific Computing, pp. 163202. Birkhäuser.

6. G. I. Barenblatt 2003 Scaling. Cambridge University Press.

9. A. de Boer , M. S. van der Schoot & H. Bijl 2007 Mesh deformation based on radial basis function interpolation. Comput. Struct. 85 (11–14), 784795.

10. F. M. Bos , D. Lentink , B. W. van Oudheusden & H. Bijl 2008 Influence of wing kinematics on aerodynamic performance in hovering insect flight. J. Fluid Mech. 594, 341368.

11. R. Buchwald & R. Dudley 2010 Limits to vertical force and power production in bumblebees (Hymenoptera: Bombus impatiens). J. Expl Biol. 213, 426432.

12. J.-S. Chen , J.-Y. Chen & Y.-F. Chou 2008 On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313, 643654.

13. S. K. Chimakurthi , C. E. S. Cesnik & B. Stanford 2011 Flapping-wing structural dynamics formulation based on a corotational shell finite element. AIAA J. 49 (1), 128142.

14. S. K. Chimakurthi , J. Tang , R. Palacios , C. E. S. Cesnik & W. Shyy 2009 Computational aeroelasticity framework for analysing flapping wing micro air vehicles. AIAA J. 47, 18651878.

15. S. A. Combes & T. L. Daniel 2003a Flexural stiffness in insect wings. Part I. Scaling and the influence of wing venation. J. Expl Biol. 206 (17), 29792987.

16. S. A. Combes & T. L. Daniel 2003b Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Expl Biol. 206 (17), 29993006.

17. T. L. Daniel & S. A. Combes 2002 Flexible wings and fins: bending by inertial or fluid-dynamic forces? Integr. Compar. Biol. 42 (5), 10441049.

19. R. Falgout & U. Yang 2002 hypre: a library of high performance preconditioners. In Computational Science ICCS 2002 (ed. P. Sloot , A. Hoekstra , C. Tan & J. Dongarra ), pp. 632641. Springer.

20. P. J. S. A. Ferreira de Sousa & J. J. Allen 2011 Thrust efficiency of harmonically oscillating flexible flat plates. J. Fluid Mech. 674, 4366.

25. S. Heathcote & I. Gursul 2007 Flexible flapping aerofoil propulsion at low Reynolds numbers. AIAA J. 45 (5), 10661079.

26. S. Heathcote , Z. Wang & I. Gursul 2008 Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24 (2), 183199.

27. D. Ishihara , T. Horie & M. Denda 2009a A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. J. Expl Biol. 212 (1), 110.

28. D. Ishihara , Y. Yamashita , T. Horie , S. Yoshida & T. Niho 2009b Passive maintenance of high angle of attack and its generation during flapping translation in crane fly wing. J. Expl Biol. 212, 38823891.

29. R. Kamakoti & W. Shyy 2004 Evaluation of geometric conservation law using pressure-based fluid solver and moving grid technique. Intl J. Heat Fluid Flow 14 (7), 851865.

32. J. Katz & A. Plotkin 2001 Low-Speed Aerodynamics. Cambridge University Press.

33. P. Khosravi , R. Ganesan & R. Sedaghati 2007 Corotational nonlinear analysis of thin plates and shells using a new shell element. Intl J. Numer. Meth. Engng 69 (4), 859885.

34. D. Kim & M. Gharib 2011 Flexibility effects on vortex formation of translating plates. J. Fluid Mech. 677, 255271.

35. U. Küttler & W. A. Wall 2008 Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43, 6172.

36. E. A. Luke & T. George 2005 Loci: a rule-based framework for parallel multi-disciplinary simulation synthesis. J. Funct. Program 15 (03), 477502.

37. H. Masoud & A. Alexeev 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81, 056304.

38. T. Maxworthy 1981 The fluid dynamics of insect flight. Annu. Rev. Fluid. Mech. 13, 329350.

39. S. Michelin & S. G. Llewellyn Smith 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.

41. U. M. Norberg 1990 Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology, and Evolution. Springer.

43. S. Ramananarivo , R. Godoy-Diana & B. Thiria 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl. Acad. Sci. USA 108 (15), 59645969.

45. S. P Sane 2003 The aerodynamics of insect flight. J. Expl Biol. 206, 41914208.

46. E. Shevtsova , C. Hansson , D. H. Janzen & J. Kjaerandsen 2011 Stable structural colour patterns displayed on transparent insect wings. Proc. Natl. Acad. Sci. USA 108 (213), 668673.

47. W. Shyy , H. Aono , S. K. Chimakurthi , P. Trizila , C.-K. Kang , C. E. S. Cesnik & H. Liu 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.

48. W. Shyy , M. Berg & D. Ljungqvist 1999 Flapping and flexible wings for biological and micro air vehicles. Prog. Aerosp. Sci. 35 (5), 455505.

49. W. Shyy , L. Lian , J. Tang , H. Liu , P. Trizila , B. Stanford , L. P. Bernal , C. E. S. Cesnik , P. Friedmann & P. Ifju 2008a Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mechanica Sin. 24, 351373.

50. W. Shyy , Y. Lian , J. Tang , D. Viieru & H. Liu 2008b Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.

51. W. Shyy , P. Trizila , C.-K. Kang & H. Aono 2009 Can tip vortices enhance lift of a flapping wing? AIAA 47, 289293.

52. R. W. Smith & J. A. Wright 2003 An implicit edge-based ale method for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 43, 253279.

53. S. E. Spagnolie , L. Moret , M. J. Shelley & J. Zhang 2010 Surprising behaviours in flapping locomotion with passive pitching. Phys. Fluids 22, 041903.

54. S. Sunada , L. Zeng & K. Kawachi 1998 The relationship between dragonfly wing structure and torsional deformation. J. Theor. Biol. 193, 3945.

56. B. Thiria & R. Godoy-Diana 2010 How wing compliance drives the efficiency of self-propelled flapping flyers. Phys. Rev. E 82 (1), 015303.

57. P. D. Thomas & C. K. Lombard 1979 Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17 (10), 10301037.

59. B. W. Tobalske 2007 Biomechanics of bird flight. J. Expl Biol. 210, 31353146.

60. M. S. Triantafyllou , G. S. Triantafyllou & D. K. P. Yue 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid. Mech. 32, 3353.

61. P. Trizila , C.-K. Kang , H. Aono , M. Visbal & W. Shyy 2011 Low-Reynolds-number aerodynamics of a flapping rigid flat plate. AIAA J. 49 (4), 806823.

62. M. Vanella , T. Fitzgerald , S. Preidikman , E. Balaras & B. Balachandran 2009 Influence of flexibility on the aerodynamic performance of a hovering wing. J. Expl Biol. 212, 95105.

63. M. R. Visbal , R. E. Gordnier & M. C. Galbraith 2009 High-fidelity simulations of moving and flexible aerofoils at low Reynolds numbers. Exp. Fluids 46, 903922.

65. Z. J. Wang 2008 Aerodynamic efficiency of flapping flight: analysis of a two-stroke model. J. Expl Biol. 211, 234238.

66. J. P. Whitney & R. J. Wood 2010 Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197220.

69. J. A. Wright & R. W Smith 2001 An edge-based method for the incompressible Navier–Stokes equations on polygonal meshes. J. Comput. Phys. 169, 2443.

70. P. Wu , P. Ijfu & B. Stanford 2010 Flapping wing structural deformation and thrust correlation study with flexible membrane wings. AIAA J. 48 (9), 21112122.

71. B. Yin & H. Luo 2010 Effect of wing inertia on hovering performance of flexible flapping wings. Phys. Fluids 22, 111902.

72. J. Zhang , N.-S. Liu & X.-Y. Lu 2010 Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 4368.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 172 *
Loading metrics...

Abstract views

Total abstract views: 381 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.