Skip to main content
×
Home
    • Aa
    • Aa

Effects of initial conditions in decaying turbulence generated by passive grids

  • P. LAVOIE (a1), L. DJENIDI (a1) and R. A. ANTONIA (a1)
Abstract

The effects of initial conditions on grid turbulence are investigated for low to moderate Reynolds numbers. Four grid geometries are used to yield variations in initial conditions and a secondary contraction is introduced to improve the isotropy of the turbulence. The hot-wire measurements, believed to be the most detailed to date for this flow, indicate that initial conditions have a persistent impact on the large-scale organization of the flow over the length of the tunnel. The power-law coefficients, determined via an improved method, also depend on the initial conditions. For example, the power-law exponent m is affected by the various levels of large-scale organization and anisotropy generated by the different grids and the shape of the energy spectrum at low wavenumbers. However, the results show that these effects are primarily related to deviations between the turbulence produced in the wind tunnel and true decaying homogenous isotropic turbulence (HIT). Indeed, when isotropy is improved and the intensity of the large-scale periodicity, which is primarily associated with round-rod grids, is decreased, the importance of initial conditions on both the character of the turbulence and m is diminished. However, even in the case where the turbulence is nearly perfectly isotropic, m is not equal to −1, nor does it show an asymptotic trend in x towards this value, as suggested by recent analysis. Furthermore, the evolution of the second- and third-order velocity structure functions satisfies equilibrium similarity only approximately.

Copyright
References
Hide All
Antonia R. A. & Orlandi P. 2004 Similarity of decaying isotropic turbulence with a passive scalar. J. Fluid Mech. 505, 123151.
Antonia R. A., Ould-Rouis M., Anselmet F. & Zhu Y. 1997 Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech. 332, 395409.
Antonia R. A., Zhou T. & Zhu Y. 1998 Three-component vorticity measurements in a turbulent grid flow. J. Fluid Mech. 374, 2957.
Antonia R. A., Smalley R. J., Zhou T., Anselmet F. & Danaila L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.
Batchelor G. K. 1947 Kolmogoroff theory of locally isotropic turbulence. Proc. Camb. Phil. Soc. 43, 533559.
Batchelor G. K. 1948 Energy decay and self-preserving correlation functions in isotropic turbulence. Q. Appl. Maths 6, 97116.
Batchelor G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor G. K. & Townsend A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R. Soc. Lond. A 190, 534550.
Batchelor G. K. & Townsend A. A. 1948 Decay of isotropic turbulence in the initial period. Proc. R. Soc. Lond. A 193, 539558.
Benedict L. H. & Gould R. D. 1996 Towards better uncertainty estimates for turbulence statistics. Exps. Fluids 22, 129136.
Bennett J. C. & Corrsin S. 1978 Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction. Phys. Fluids 21, 21292140.
de Bruyn Kops S. M. & Riley J. J. 1998 Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10, 21252127.
Burattini P. & Antonia R. A. 2005 The effect of different X-wire calibration schemes on some turbulence statistics. Exps Fluids 38, 8089.
Burattini P., Lavoie P., Agrawal A., Djenidi L. & Antonia R. A. 2006 On the power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys. Rev. E 73, 066304.
Chasnov J. R. 1993 Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids 6 (2), 10361051.
Comte-Bellot G. & Corrsin S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.
Corrsin S. 1963 Turbulence: experimental methods. In Handbuch der Physik (ed. Flügge S. & Truesdell C. A.), pp. 524589. Springer.
Danaila L., Anselmet F. & Antonia R. A. 2002 An overview of the effect of large-scale inhomogeneities on small-scale turbulence. Phys. Fluids 14 (7), 24752484.
Dryden H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths 1, 742.
Fulachier L. & Antonia R. A. 1983 Turbulent Reynolds and Péclet numbers re-defined. Intl Commun. Heat Mass Transfer 10, 435439.
Gad-el-Hak M. & Corrsin S. 1974 Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62, 115143.
George W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 14921509.
George W. K. & Davidson L. 2004 Role of initial conditions in establishing asymptotic flow behavior. AIAA J. 42, 438446.
George W. K., Wang H., Wollbald C. & Johansson T. G. 2001 Homogeneous turbulence and its relation to realizable flows. In 14th Australasian Fluid Mechanics Conference, pp. 4148. Adelaide University.
Huang M.-J. & Leonard A. 1994 Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys. Fluids 6 (11), 37653775.
Kang S. H., Chester S. & Meneveau C. 2003 Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129160.
von Kármán T. & Howarth L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192215.
Kistler A. L. & Vrebalovich T. 1966 Grid turbulence at large Reynolds numbers. J. Fluid Mech. 26, 3747.
Kolmogorov A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. Acad. Sci. URSS 30, 301305.
Korneyev A. I. & Sedov L. I. 1976 Theory of isotropic turbulence and its comparison with experimental data. Fluid Mech. Sov. Res. 5 , 3748.
Lavoie P., Burattini P., Djenidi L. & Antonia R. A. 2005 Effect of initial conditions on decaying grid turbulence at low Rλ. Exps. Fluids 39, 865874.
Lavoie P., Djenidi L. & Antonia R. A. 2006 Effect of initial conditions on the generation of coherent structures in grid turbulence. In Whither Turbulence Prediction and Control Conference (ed. Choi H.). Seoul National University.
Ling S. C. & Wan C. A. 1972 Decay of isotropic turbulence generated by a mechanically agitated grid. Phys. Fluids 15 (8), 13631369.
Mansour N. N. & Wray A. A. 1994 Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6 (2), 808814.
Michelet S., Antoine Y., Lemoine F. & Mahouast M. 1998 Mesure directe du taux de dissipation de l'énergie cinétique de turbulence par vélocimétrie laser bi-composante: validation dans une turbulence de grille. C. R. Acad. Sci. Paris II b 326, 621626.
Mohamed M. S. & LaRue J. 1990 The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195214.
Monin A. S. & Yaglom A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.
Mydlarski L. & Warhaft Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.
Saffman P. G. 1968 Lectures on homogeneous turbulence. In Topics in Nonlinear Physics (ed. Zabusky N.), pp. 485614. Springer.
Speziale C. G. & Bernard P. S. 1992 The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645667.
Tennekes H. & Lumley J. L. 1972 A First Course in Turbulence. The MIT Press.
Tsinober A., Kit E. & Dracos T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169192.
Uberoi M. S. 1956 Effect of wind-tunnel contraction on free-stream turbulence. J. Aero. Sci. 23, 754764.
Uberoi M. S. & Wallis S. 1966 Small axisymmetric contraction of grid turbulence. J. Fluid Mech. 24, 539543.
Uberoi M. S. & Wallis S. 1967 Effect of grid geometry on turbulence decay. Phys. Fluids 10, 12161224.
Wray A. 1998 Decaying isotropic turbulence. Tech. Rep. AGARD Advisory Rep.
Zhou T., Antonia R. A., Lasserre J.-J., Coantic M. & Anselmet F. 2003 Transverse velocity and temperature derivative measurements in grid turbulence. Exps. Fluids 34, 449459.
Zhu Y. & Antonia R. A. 1995 Effect of wire separation on X-probe measurements in a turbulent flow. J. Fluid Mech. 287, 199223.
Zhu Y. & Antonia R. A. 1996 The spatial resolution of hot-wire arrays for the measurement of small-scale turbulence. Meas. Sci. Technol. 7, 13491359.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.