Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T06:33:46.565Z Has data issue: false hasContentIssue false

Effects of phase boundary and shear on diffusive instability

Published online by Cambridge University Press:  22 May 2023

Cailei Lu
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China Key Laboratory of Aerospace Thermophysics, Harbin Institute of Technology, Harbin 150001, PR China
Mengqi Zhang
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore, Republic of Singapore
Xuerao He
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore, Republic of Singapore
Kang Luo*
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
Hongliang Yi*
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China Key Laboratory of Aerospace Thermophysics, Harbin Institute of Technology, Harbin 150001, PR China
*
Email addresses for correspondence: luokang@hit.edu.cn, yihongliang@hit.edu.cn
Email addresses for correspondence: luokang@hit.edu.cn, yihongliang@hit.edu.cn

Abstract

We study the diffusive instability subject to a solid–liquid interface and a Kolmogorov flow using modal, non-modal analyses and energy analysis. It is found that the phase boundary has different effects on the threshold of diffusive convection for weak and strong salinity stratification. In the context of oceanography where the salinity Rayleigh number RS is very high, the ice–water interface has negligible influence on the onset of diffusive convection. In the presence of shear, the diffusive convection for RS < 106 tends to be inhibited and with the increase of shear intensity, the oscillatory, steady convective and Kelvin–Helmholtz instabilities will be successively dominant. For RS > 106, the shear has a destabilizing effect on the diffusive convection, due to the generation of thermohaline-sheared instability found by Radko (J. Fluid Mech., vol. 805, 2016, pp. 147–170). Non-modal analysis indicates that for realistic parameters of high-latitude oceans, with the transition of the ultimate energy source of instability from the density gradient to background current, the thermohaline-shear instability is expected to transition from oscillatory to steady instability. The initial transient amplification due to double diffusion has also been studied, which is due to the generation of overstable instability at the initial phase. For RS < 106, the optimal initial condition to achieve the maximum transient growth favours longitudinal rolls. For thermohaline-shear instability, however, it favours transverse rolls and specifically, in oscillatory thermohaline-shear instability, the transient amplification can be enhanced by the shear by one order of magnitude, thus having important influence on the stability of the system.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The online version of this article has been updated since original publication. A notice detailing the change has also been published.

References

Baines, P.G. & Gill, A.E. 1969 On thermohaline convection with linear gradients. J. Fluid Mech. 37, 289306.10.1017/S0022112069000553CrossRefGoogle Scholar
Balmforth, N.J., Ghadge, S.A., Kettapun, A. & Mandre, S. 2006 Bounds on double-diffusive convection. J. Fluid Mech. 569, 2950.10.1017/S0022112006002230CrossRefGoogle Scholar
Balmforth, N.J. & Young, Y.N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.10.1017/S0022111002006371CrossRefGoogle Scholar
Begeman, C.B., Tulaczyk, S.M., Marsh, O.J., Mikucki, J.A., Stanton, T.P., Hodson, T.O., Siegfried, M.R., Powell, R.D., Christianson, K. & King, M.A. 2018 Ocean stratification and low melt rates at Ross Ice Shelf grounding zone. J. Geophys. Res. Oceans 123, 74387452.10.1029/2018JC013987CrossRefGoogle Scholar
Brown, J.M. & Radko, T. 2019 Initiation of diffusive layering by time-dependent shear. J. Fluid Mech. 858, 588608.10.1017/jfm.2018.790CrossRefGoogle Scholar
Chandler, D.M., et al. 2013 Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6, 195198.10.1038/ngeo1737CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Davis, S.H., Müller, U. & Dietsche, C. 1984 Pattern selection in single-component system coupling Bénard convection and solidification. J. Fluid Mech. 144, 133151.10.1017/S0022112084001543CrossRefGoogle Scholar
Deser, C. & Teng, H. 2008 Recent trends in Arctic sea ice and the evolving role of atmosphere circulation forcing, 1979–2007. In Arctic Sea Ice Decline: Observations, Projection, Mechanisms and Implications. Geophysical Monograph, vol. 180, pp. 7–26. American Geophysical Union.10.1029/180GM03CrossRefGoogle Scholar
Garaud, P. 2017 The formation of diffusive staircases. J. Fluid Mech. 812, 14.10.1017/jfm.2016.717CrossRefGoogle Scholar
Garaud, P. 2018 Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech. 50, 275298.CrossRefGoogle Scholar
Hewitt, I.J. 2020 Subglacial plumes. Annu. Rev. Fluid Mech. 52, 145169.10.1146/annurev-fluid-010719-060252CrossRefGoogle Scholar
Hirata, S., Goyeau, B. & Gobin, D. 2012 Onset of convective instabilities in under-ice melt ponds. Phys. Rev. E 85, 066306.10.1103/PhysRevE.85.066306CrossRefGoogle ScholarPubMed
Jerome, J.J.S., Chomaz, J.M. & Huerre, P. 2012 Transient growth in Rayleigh–Bénard–Poiseuille/Couette convection. Phys. Fluids 24, 044103.CrossRefGoogle Scholar
Kim, M.C., Lee, D.W. & Choi, C.K. 2008 Onset of buoyancy-driven convection in melting from below. Korean J. Chem. Engng 25 (6), 12391244.10.1007/s11814-008-0205-0CrossRefGoogle Scholar
Konopliv, N., Lesshafft, L. & Meiburg, E. 2018 The influence of shear on double-diffusive settling-driven instabilities. J. Fluid Mech. 849, 902926.10.1017/jfm.2018.432CrossRefGoogle Scholar
Linden, P.F. 1974 Salt fingerings in s steady shear flow. Geophys. Fluid Dyn. 6, 127.10.1080/03091927409365785CrossRefGoogle Scholar
Martin, S. & Kauffman, P. 1974 The evolution of under-ice melt ponds, or double diffusion at freezing point. J. Fluid Mech. 64, 507527.10.1017/S0022112074002527CrossRefGoogle Scholar
McDougall, T.J. 1983 Greenland Sea Bottom Water formation: a balance between advection and double-diffusion. Deep Sea Res. 30, 11091117.10.1016/0198-0149(83)90090-0CrossRefGoogle Scholar
McPhee, M. 2008 Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Process. Springer-Verlag.10.1007/978-0-387-78335-2CrossRefGoogle Scholar
Nield, D.A. 1968 The Rayleigh–Jeffreys problem with boundary slab of finite conductivity. J. Fluid Mech. 32 (Part 2), 393398.10.1017/S0022112068000790CrossRefGoogle Scholar
Perovich, D., Richter-Menge, J., Polashenski, C., Elder, B., Arbetter, T. & Brennick, O. 2014 Sea ice mass balance observations from the North Pole Environmental Observatory. Geophys. Res. Lett. 41, 20192025.10.1002/2014GL059356CrossRefGoogle Scholar
Polashenski, C., Golden, K.M., Perovich, D.K., Skyllingstad, E., Arnsten, A., Stwertka, C. & Wright, N. 2017 Percolation blockage: a process that enables melt pond formation on first year arctic sea ice. J. Geophys. Res: Oceans 122, 413440.10.1002/2016JC011994CrossRefGoogle Scholar
Polashenski, C., Perovich, , Courville, D.K., Z. 2012 The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res. 117, C01001.10.1029/2011JC007231CrossRefGoogle Scholar
Polyakov, I.V., et al. 2017 Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285291.10.1126/science.aai8204CrossRefGoogle ScholarPubMed
Predtechensky, A.A., McCormick, W.D., Swift, J.B., Noszticzius, Z. & Swinney, H.L. 1994 Onset of travelling waves in isothermal double-diffusive convection. Phys. Rev. Lett. 72, 2.10.1103/PhysRevLett.72.218CrossRefGoogle ScholarPubMed
Purseed, J., Favier, B. & Duchemin, L. 2020 Bistability in Rayleigh-Bénard convection with a melting boundary. Phys. Rev. Fluids 5, 023501.10.1103/PhysRevFluids.5.023501CrossRefGoogle Scholar
Radko, T. 2013 Double-Diffusive Convection. Cambridge University Press.10.1017/CBO9781139034173CrossRefGoogle Scholar
Radko, T. 2016 Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid Mech. 805, 147170.CrossRefGoogle Scholar
Radko, T. 2019 Thermohaline-shear instability. Geophys. Res. Lett. 46, 822832.CrossRefGoogle Scholar
Radko, T. & Stern, M.E. 2011 Finescale instabilities of the double-diffusive shear flow. J. Phys. Oceanogr. 41, 571585.10.1175/2010JPO4459.1CrossRefGoogle Scholar
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. 2013 Ice-shelf melting around Antarctica. Science 341 (6143), 266270.10.1126/science.1235798CrossRefGoogle ScholarPubMed
Rothrock, D.A., Yu, Y. & Maykut, G.A. 1999 Thinning of the Arctic sea ice cover. Geophys. Res. Lett. 26, 34693472.CrossRefGoogle Scholar
Schmid, P.J. & de Langre, E. 2003 Transient growth before coupled-mode flutter. J. Appl. Mech. 70, 894901.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nomodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P.J. & de Langre, E. 2003 Transient growth before coupled-mode flutter. J. Appl. Mech. 70, 894901.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flow. Springer.CrossRefGoogle Scholar
Schmitt, R.W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26, 255285.CrossRefGoogle Scholar
Symth, W.D. & Kimura, S. 2007 Instability and momentum transport in a double-diffusive, stratified shear layer. J. Phys. Oceanogr. 11, 15511556.CrossRefGoogle Scholar
Toppaladoddi, S. & Wettlaufer, J.S. 2019 Combined effects of shear and buoyancy on phase boundary instability. J. Fluid Mech. 868, 648665.CrossRefGoogle Scholar
Turner, J.S. 1985 Multicomponent convection. Annu. Rev. Fluid Mech. 17, 1144.CrossRefGoogle Scholar
Turner, J.S. 2010 The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below. J. Phys. Oceanogr. 40, 249256.CrossRefGoogle Scholar
Vasil, G.M. & Proctor, M.R.E. 2011 Dynamic bifurcations and pattern formation in melting-boundary convection. J. Fluid Mech. 686, 77108.CrossRefGoogle Scholar
Veronis, G. 1965 On finite amplitude instability in thermohaline convection. J. Mar. Res. 23, 117.Google Scholar
Wadhams, P. & Davis, N.R. 2000 Further evidence of ice thinning in the Arctic Ocean. Geophys. Lett. 27, 39733975.CrossRefGoogle Scholar
Weideman, J.A. & Reddy, S.C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Yang, Y.T., Verzicco, R., Lohse, D. & Caufield, C.P. 2022 Layering and vertical transport in sheared double-diffusive convection in the diffusive regime. J. Fluid Mech. 933, A30.CrossRefGoogle Scholar
Zhang, M., Martinelli, F., Wu, J., Schmid, P.J. & Quadrio, M. 2015 Modal and non-modal stability analysis of electrohydrodynamic flow with and without cross flow. J. Fluid Mech. 770, 319349.10.1017/jfm.2015.134CrossRefGoogle Scholar