Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-29T18:05:35.820Z Has data issue: false hasContentIssue false

Efficiency of turbulence

Published online by Cambridge University Press:  23 September 2025

Adrien Lopez
Affiliation:
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
Amaury Barral
Affiliation:
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
Guillaume Costa
Affiliation:
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
Quentin Pikeroen
Affiliation:
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
Vishwanath Shukla
Affiliation:
Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, India
Berengere Dubrulle*
Affiliation:
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
*
Corresponding author: Berengere Dubrulle, berengere.dubrulle@cea.fr

Abstract

We consider the efficiency of turbulence, a dimensionless parameter that characterises the fraction of the input energy stored in a turbulent flow field. We first show that the inverse of the efficiency provides an upper bound for the dimensionless energy injection in a turbulent flow. We analyse the efficiency of turbulence for different flows using numerical and experimental data. Our analysis suggests that efficiency is bounded from above, and, in some cases, saturates following a power law reminiscent of phase transitions and bifurcations. We show that for the von Kármán flow the efficiency saturation is insensitive to the details of the forcing impellers. In the case of Rayleigh–Bénard convection, we show that within the Grossmann and Lohse model, the efficiency saturates in the inviscid limit, while the dimensionless kinetic energy injection/dissipation goes to zero. In the case of pipe flow, we show that saturation of the efficiency cannot be excluded, but would be incompatible with the Prandtl law of the drag friction coefficient. Furthermore, if the power-law behaviour holds for the efficiency saturation, it can explain the kinetic energy and the energy dissipation defect laws proposed for shear flows. Efficiency saturation is an interesting empirical property of turbulence that may help in evaluating the ‘closeness’ of experimental and numerical data to the true turbulent regime, wherein the kinetic energy saturates to its inviscid limit.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G. et al. 2022 Aspect ratio dependence of heat transfer in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 128, 084501.CrossRefGoogle Scholar
Campolina, C.S. 2019 Fluid dynamics on logarithmic lattices and singularities of Euler flow, Master’s thesis, IMPA.Google Scholar
Campolina, C.S. & Mailybaev, A.A. 2018 Chaotic blowup in the 3D incompressible Euler equations on a logarithmic lattice. Phys. Rev. Lett. 121, 064501.CrossRefGoogle ScholarPubMed
Campolina, C.S. & Mailybaev, A.A. 2021 Fluid dynamics on logarithmic lattices. Nonlinearity 34 (7), 4684.CrossRefGoogle Scholar
Chavanne, X., Chillà, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.CrossRefGoogle Scholar
Chen, X. & Sreenivasan, K.R. 2021 Reynolds number scaling of the peak turbulence intensity in wall flows. J. Fluid Mech. 908, R3.10.1017/jfm.2020.991CrossRefGoogle Scholar
Cortet, P.-P., Chiffaudel, A., Daviaud, F. & Dubrulle, B. 2010 Experimental evidence of a phase transition in a closed turbulent flow. Phys. Rev. Lett. 105, 214501.CrossRefGoogle Scholar
Cortet, P.-P., Diribarne, P., Monchaux, R., Chiffaudel, A., Daviaud, F. & Dubrulle, B. 2009 Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence. Phys. Fluids 21 (2), 025104.10.1063/1.3073745CrossRefGoogle Scholar
Costa, G., Barral, A. & Dubrulle, B. 2023 Reversible Navier–Stokes equation on logarithmic lattices. Phys. Rev. E 107, 065106.CrossRefGoogle ScholarPubMed
Debue, P. 2019 Experimental approach to the problem of the Navier–Stokes singularities. PhD thesis, Université Paris-Saclay, France.Google Scholar
Diribarne, P. et al. 2021 Investigation of properties of superfluid $^{4}\textrm{He}$ turbulence using a hot-wire signal. Phys. Rev. Fluids 6, 094601.CrossRefGoogle Scholar
Doering, C.R. & Foias, C. 2002 Energy dissipation in body-forced turbulence. J. Fluid Mech. 467, 289306.CrossRefGoogle Scholar
Dubrulle, B. 2024 Log at first sight. J. Fluid Mech. 1000, F6.10.1017/jfm.2024.873CrossRefGoogle Scholar
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.-Y., Richard, D. & Zahn, J.-P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17 (9), 095103.CrossRefGoogle Scholar
Eyink, G.L. & Peng, L. 2024 Space-time statistical solutions of the incompressible Euler equations and Landau–Lifshitz fluctuating hydrodynamics. arXiv: 2409.13103.CrossRefGoogle Scholar
Gallavotti, G. 1996 Equivalence of dynamical ensembles and Navier–Stokes equations. Phys. Lett. A 223 (1), 9195.10.1016/S0375-9601(96)00729-3CrossRefGoogle Scholar
Lathrop, D.P., Fineberg, J. & Swinney, H.L. 1992 a Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.CrossRefGoogle ScholarPubMed
Lathrop, D.P., Fineberg, J. & Swinney, H.L. 1992 b Turbulent flow between concentric rotating cylinders at large Reynolds number. Phys. Rev. Lett. 68, 15151518.10.1103/PhysRevLett.68.1515CrossRefGoogle ScholarPubMed
Lohse, D. 1994 Crossover from high to low Reynolds number turbulence. Phys. Rev. Lett. 73, 32233226.10.1103/PhysRevLett.73.3223CrossRefGoogle ScholarPubMed
Lohse, D. & Shishkina, O. 2024 Ultimate Rayleigh–Bénard turbulence. Rev. Mod. Phys. 96, 035001.CrossRefGoogle Scholar
McKeon, B.J., Li, J., Jiang, W., Morrison, J.F. & Smits, A.J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135D147.10.1017/S0022112003007304CrossRefGoogle Scholar
Méthivier, L., Braun, R., Chillà, F. & Salort, J. 2022 Turbulent transition in Rayleigh–Bénard convection with fluorocarbon(a). Europhys. Lett. 136 (1), 10003.CrossRefGoogle Scholar
Monchaux, R. 2007 Approche statistique des écoulements turbulents. PhD thesis, Dynamique des fluides et des transferts Paris, France.Google Scholar
Paoletti, M.S., van Gils, D.P.M., Dubrulle, B., Sun, C., Lohse, D. & Lathrop, D.P. 2012 Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astron. Astrophys. 547, A64.CrossRefGoogle Scholar
Pikeroen, Q., Barral, A., Costa, G., Campolina, C., Mailybaev, A. & Dubrulle, B. 2024 Tracking complex singularities of fluids on log-lattices. Nonlinearity 37, 115003.CrossRefGoogle Scholar
Pirozzoli, S. 2024 On the streamwise velocity variance in the near-wall region of turbulent flows. J. Fluid Mech. 989, A5.10.1017/jfm.2024.467CrossRefGoogle Scholar
Ravelet, F. 2005 Bifurcations globales hydrodynamiques et magnétohydrodynamiques dans un écoulement de von Kármán turbulent. PhD thesis, Ecole polytechnique, France.Google Scholar
Ravelet, F., Chiffaudel, A. & Daviaud, F. 2008 Supercritical transition to turbulence in an inertially driven von Kármán closed flow. J. Fluid Mech. 601, 339364.CrossRefGoogle Scholar
Roche, P.-E. 2020 The ultimate state of convection: a unifying picture of very high Rayleigh numbers experiments. New J. Phys. 22 (7), 073056.10.1088/1367-2630/ab9449CrossRefGoogle Scholar
Rousset, B. et al. 2014 Superfluid high Reynolds von Kármán experiment. Rev. Sci. Instrum. 85 (10), 103908.CrossRefGoogle Scholar
Saint-Michel, B. et al. 2014 Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments. Phys. Fluids 26 (12), 125109.10.1063/1.4904378CrossRefGoogle Scholar
Scheel, J.D. & Schumacher, J. 2017 Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows. Phys. Rev. Fluids 2, 123501.CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 36503653.10.1103/PhysRevA.42.3650CrossRefGoogle ScholarPubMed
Shukla, V., Dubrulle, B., Nazarenko, S., Krstulovic, G. & Thalabard, S. 2019 Phase transition in time-reversible Navier–Stokes equations. Phys. Rev. E 100 (4), 043104.CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., Blass, A., Zhu, X., Verzicco, R. & Lohse, D. 2018 Turbulent thermal superstructures in Rayleigh–Bénard convection. Phys. Rev. Fluids 3, 041501.10.1103/PhysRevFluids.3.041501CrossRefGoogle Scholar
Swanson, C.J., Julian, B., Ihas, G.G. & Donnelly, R.J. 2002 Pipe flow measurements over a wide range of Reynolds numbers using liquid helium and various gases. J. Fluid Mech. 461, 5160.10.1017/S0022112002008595CrossRefGoogle Scholar
van Gils, D.P.M., Bruggert, G.-W., Lathrop, D.P., Sun, C. & Lohse, D. 2011 The Twente turbulent Taylor–Couette (T3C) facility: strongly turbulent (multiphase) flow between two independently rotating cylinders. Rev. Sci. Instrum. 82 (2), 025105.10.1063/1.3548924CrossRefGoogle ScholarPubMed