Skip to main content
    • Aa
    • Aa

Energy cascade and scaling in supersonic isothermal turbulence

  • Alexei G. Kritsuk (a1), Rick Wagner (a2) and Michael L. Norman (a1) (a2)

Supersonic turbulence plays an important role in a number of extreme astrophysical and terrestrial environments, yet its understanding remains rudimentary. We use data from a three-dimensional simulation of supersonic isothermal turbulence to reconstruct an exact fourth-order relation derived analytically from the Navier–Stokes equations (Galtier & Banerjee, Phys. Rev. Lett., vol. 107, 2011, p. 134501). Our analysis supports a Kolmogorov-like inertial energy cascade in supersonic turbulence previously discussed on a phenomenological level. We show that two compressible analogues of the four-fifths law exist describing fifth- and fourth-order correlations, but only the fourth-order relation remains ‘universal’ in a wide range of Mach numbers from incompressible to highly compressible regimes. A new approximate relation valid in the strongly supersonic regime is derived and verified. We also briefly discuss the origin of bottleneck bumps in simulations of compressible turbulence.

Corresponding author
Email address for correspondence:
Hide All
AluieH. 2011 Compressible turbulence: the cascade and its locality. Phys. Rev. Lett. 106 (17), 174502.
AluieH. 2013 Scale decomposition in compressible turbulence. Physica D 247 (1), 5465.
AluieH., LiS. & LiH. 2012 Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, L29.
BanerjeeS. & GaltierS. 2013 Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys. Rev. E 87, 013019.
ColellaP. & WoodwardP. R. 1984 The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174201.
DavidsonP. A. & PearsonB. R. 2005 Identifying turbulent energy distributions in real, rather than Fourier, space. Phys. Rev. Lett. 95 (21), 214501.
DoblerW., HaugenN. E., YousefT. A. & BrandenburgA. 2003 Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68 (2), 026304.
FalkovichG. 1994 Bottleneck phenomenon in developed turbulence. Phys. Fluids 6, 14111414.
FalkovichG., FouxonI. & OzY. 2010 New relations for correlation functions in Navier–Stokes turbulence. J. Fluid Mech. 644, 465472.
FederrathC., Roman-DuvalJ., KlessenR. S., SchmidtW. & Mac LowM.-M. 2010 Comparing the statistics of interstellar turbulence in simulations and observations: solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81.
FrischU. 1995 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.
GaltierS. & BanerjeeS. 2011 Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107 (13), 134501.
GrinsteinF. F., MargolinL. G. & RiderW. J. (Eds) 2007 Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.
HennebelleP. & FalgaroneE. 2012 Turbulent molecular clouds. Astron. Astrophys. Rev. 20:55, 158.
HobbsA., NayakshinS., PowerC. & KingA. 2011 Feeding supermassive black holes through supersonic turbulence and ballistic accretion. Mon. Not. R. Astron. Soc. 413, 26332650.
IngenitoA. & BrunoC. 2010 Physics and regimes of supersonic combustion. AIAA J. 48, 515525.
KimJ. & RyuD. 2005 Density power spectrum of compressible hydrodynamic turbulent flows. Astrophys. J. Lett. 630, L45–L48.
KolmogorovA. N. 1941 Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1921.
KowalG. & LazarianA. 2007 Scaling relations of compressible MHD turbulence. Astrophys. J. Lett. 666, L69–L72.
KritsukA. G., NormanM. L., PadoanP. & WagnerR. 2007a The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416431.
KritsukA. G., PadoanP., WagnerR. & NormanM. L. 2007b Scaling laws and intermittency in highly compressible turbulence. In Turbulence and Nonlinear Processes in Astrophysical Plasmas (ed. Shaikh D. & Zank G. P.), AIP Conference Proceedings, vol. 932, pp. 393399.
KritsukA. G., UstyugovS., NormanM. L. & PadoanP. 2010 Self-organization in turbulent molecular clouds: compressional versus solenoidal modes. In Numerical Modelling of Space Plasma Flows (ed. Pogorelov N., Audit E. & Zank G.), ASP Conference Series, vol. 429, pp. 1521.
MoffatA. F. J. & RobertC. 1994 Clumping and mass loss in hot star winds. Astrophys. J. 421, 310313.
OgdenD. E., GlatzmaierG. A. & WohletzK. H. 2008 Effects of vent overpressure on buoyant eruption columns: implications for plume stability. Earth Planet. Sci. Lett. 268, 283292.
O’SheaB. W., BryanG., BordnerJ., NormanM. L., AbelT., HarknessR. & KritsukA. 2004 Introducing Enzo, an AMR cosmology application. ArXiv(astro-ph/0403044).
PanL., PadoanP. & KritsukA. G. 2009 Dissipative structures in supersonic turbulence. Phys. Rev. Lett. 102, 034501.
PorterD. H., PouquetA. & WoodwardP. R. 1992 A numerical study of supersonic turbulence. Theor. Comput. Fluid Dyn. 4, 1349.
PorterD. H., PouquetA. & WoodwardP. R. 1994 Kolmogorov-like spectra in decaying three-dimensional supersonic flows. Phys. Fluids 6, 21332142.
PorterD. H. & WoodwardP. R. 1994 High-resolution simulations of compressible convection using the piecewise-parabolic method. Astrophys. J. Suppl. 93, 309349.
PriceD. J. & FederrathC. 2010 A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence. Mon. Not. R. Astron. Soc. 406, 16591674.
RobertsonB. & GoldreichP. 2012 Adiabatic heating of contracting turbulent fluids. Astrophys. J. Lett. 750, L31.
SchmidtW., FederrathC. & KlessenR. 2008 Is the scaling of supersonic turbulence universal? Phys. Rev. Lett. 101 (19), 194505.
SchwarzC., BeetzC., DreherJ. & GrauerR. 2010 Lyapunov exponents and information dimension of the mass distribution in turbulent compressible flows. Phys. Lett. A 374, 10391042.
WagnerR., FalkovichG., KritsukA. G. & NormanM. L. 2012 Flux correlations in supersonic isothermal turbulence. J. Fluid Mech. 713, 482490.
WangJ., ShiY., WangL.-P., XiaoZ., HeX. & ChenS. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 51 *
Loading metrics...

Abstract views

Total abstract views: 178 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.