Skip to main content
×
Home
    • Aa
    • Aa

Energy cascade and scaling in supersonic isothermal turbulence

  • Alexei G. Kritsuk (a1), Rick Wagner (a2) and Michael L. Norman (a1) (a2)
Abstract
Abstract

Supersonic turbulence plays an important role in a number of extreme astrophysical and terrestrial environments, yet its understanding remains rudimentary. We use data from a three-dimensional simulation of supersonic isothermal turbulence to reconstruct an exact fourth-order relation derived analytically from the Navier–Stokes equations (Galtier & Banerjee, Phys. Rev. Lett., vol. 107, 2011, p. 134501). Our analysis supports a Kolmogorov-like inertial energy cascade in supersonic turbulence previously discussed on a phenomenological level. We show that two compressible analogues of the four-fifths law exist describing fifth- and fourth-order correlations, but only the fourth-order relation remains ‘universal’ in a wide range of Mach numbers from incompressible to highly compressible regimes. A new approximate relation valid in the strongly supersonic regime is derived and verified. We also briefly discuss the origin of bottleneck bumps in simulations of compressible turbulence.

Copyright
Corresponding author
Email address for correspondence: akritsuk@ucsd.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Aluie 2011 Compressible turbulence: the cascade and its locality. Phys. Rev. Lett. 106 (17), 174502.

H. Aluie 2013 Scale decomposition in compressible turbulence. Physica D 247 (1), 5465.

H. Aluie , S. Li & H. Li 2012 Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, L29.

S. Banerjee & S. Galtier 2013 Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys. Rev. E 87, 013019.

P. Colella & P. R. Woodward 1984 The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174201.

P. A. Davidson & B. R. Pearson 2005 Identifying turbulent energy distributions in real, rather than Fourier, space. Phys. Rev. Lett. 95 (21), 214501.

W. Dobler , N. E. Haugen , T. A. Yousef & A. Brandenburg 2003 Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68 (2), 026304.

G. Falkovich 1994 Bottleneck phenomenon in developed turbulence. Phys. Fluids 6, 14111414.

C. Federrath , J. Roman-Duval , R. S. Klessen , W. Schmidt & M.-M. Mac Low 2010 Comparing the statistics of interstellar turbulence in simulations and observations: solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81.

U. Frisch 1995 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.

S. Galtier & S. Banerjee 2011 Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107 (13), 134501.

F. F. Grinstein , L. G. Margolin & W. J. Rider  (Eds) 2007 Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.

A. Hobbs , S. Nayakshin , C. Power & A. King 2011 Feeding supermassive black holes through supersonic turbulence and ballistic accretion. Mon. Not. R. Astron. Soc. 413, 26332650.

A. Ingenito & C. Bruno 2010 Physics and regimes of supersonic combustion. AIAA J. 48, 515525.

J. Kim & D. Ryu 2005 Density power spectrum of compressible hydrodynamic turbulent flows. Astrophys. J. Lett. 630, L45–L48.

G. Kowal & A. Lazarian 2007 Scaling relations of compressible MHD turbulence. Astrophys. J. Lett. 666, L69–L72.

A. G. Kritsuk , M. L. Norman , P. Padoan & R. Wagner 2007a The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416431.

A. G. Kritsuk , P. Padoan , R. Wagner & M. L. Norman 2007b Scaling laws and intermittency in highly compressible turbulence. In Turbulence and Nonlinear Processes in Astrophysical Plasmas (ed. D. Shaikh & G. P. Zank ), AIP Conference Proceedings, vol. 932, pp. 393399.

A. F. J. Moffat & C. Robert 1994 Clumping and mass loss in hot star winds. Astrophys. J. 421, 310313.

D. E. Ogden , G. A. Glatzmaier & K. H. Wohletz 2008 Effects of vent overpressure on buoyant eruption columns: implications for plume stability. Earth Planet. Sci. Lett. 268, 283292.

L. Pan , P. Padoan & A. G. Kritsuk 2009 Dissipative structures in supersonic turbulence. Phys. Rev. Lett. 102, 034501.

D. H. Porter , A. Pouquet & P. R. Woodward 1992 A numerical study of supersonic turbulence. Theor. Comput. Fluid Dyn. 4, 1349.

D. H. Porter , A. Pouquet & P. R. Woodward 1994 Kolmogorov-like spectra in decaying three-dimensional supersonic flows. Phys. Fluids 6, 21332142.

D. H. Porter & P. R. Woodward 1994 High-resolution simulations of compressible convection using the piecewise-parabolic method. Astrophys. J. Suppl. 93, 309349.

B. Robertson & P. Goldreich 2012 Adiabatic heating of contracting turbulent fluids. Astrophys. J. Lett. 750, L31.

W. Schmidt , C. Federrath & R. Klessen 2008 Is the scaling of supersonic turbulence universal? Phys. Rev. Lett. 101 (19), 194505.

C. Schwarz , C. Beetz , J. Dreher & R. Grauer 2010 Lyapunov exponents and information dimension of the mass distribution in turbulent compressible flows. Phys. Lett. A 374, 10391042.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 120 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.