Skip to main content Accessibility help

Energy dissipation caused by boundary layer instability at vanishing viscosity

  • Natacha Nguyen van yen (a1), Matthias Waidmann (a1), Rupert Klein (a1), Marie Farge (a2) and Kai Schneider (a3)...
  • Please note a correction has been issued for this article.


A qualitative explanation for the scaling of energy dissipation by high-Reynolds-number fluid flows in contact with solid obstacles is proposed in the light of recent mathematical and numerical results. Asymptotic analysis suggests that it is governed by a fast, small-scale Rayleigh–Tollmien–Schlichting instability with an unstable range whose lower and upper bounds scale as $Re^{3/8}$ and $Re^{1/2}$ , respectively. By linear superposition, the unstable modes induce a boundary vorticity flux of order $Re^{1}$ , a key ingredient in detachment and drag generation according to a theorem of Kato. These predictions are confirmed by numerically solving the Navier–Stokes equations in a two-dimensional periodic channel discretized using compact finite differences in the wall-normal direction, and a spectral scheme in the wall-parallel direction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energy dissipation caused by boundary layer instability at vanishing viscosity
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energy dissipation caused by boundary layer instability at vanishing viscosity
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energy dissipation caused by boundary layer instability at vanishing viscosity
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Balay, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F. & Zhang, H.2013 PETSc users manual. Tech. Rep. ANL-95/11, Revision 3.4. Argonne National Laboratory.
Bardos, C. & Titi, E. S. 2013 Mathematics and turbulence: where do we stand? J. Turbul. 14 (3), 4276.
Bedrossian, J., Masmoudi, N. & Vicol, V. 2016 Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flow. Arch. Rat. Mech. Anal. 219 (3), 10871159.
Blasius, H. 1908 Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 137; Engl. transl. in NACA TM 1256 (1950).
Bowles, R. 2006 Lighthill and the triple-deck, separation and transition. J. Engng Maths 56 (4), 445460.
Bowles, R. I., Davies, C. & Smith, F. T. 2003 On the spiking stages in deep transition and unsteady separation. J. Engng Maths 45 (3), 227245.
Brinckman, K. W. & Walker, J. D. A. 2001 Instability in a viscous flow driven by streamwise vortices. J. Fluid Mech. 432, 127166.
Cassel, K. W. 2000 A comparison of Navier–Stokes solutions with the theoretical description of unsteady separation. Phil. Trans. R. Soc. Lond. A 358 (1777), 32073227.
Cassel, K. W. & Obabko, A. V. 2010 A Rayleigh instability in a vortex-induced unsteady boundary layer. Phys. Scr. T142, 114.
Clercx, H. & Bruneau, G.-H. 2006 The normal and oblique collision of a dipole with a no-slip boundary. Comput. Fluids 35, 245279.
Clercx, H. & van Heijst, G. J. 2002 Dissipation of kinetic energy in two-dimensional bounded flows. Phys. Rev. E 65, 066305.
Clercx, H. & van Heijst, G. J. 2017 Dissipation of coherent structures in confined two-dimensional turbulence. Phys. Fluids 29, 111103.
Cowley, S. J. 2002 Laminar boundary-layer theory: a 20th century paradox? In Mechanics for a New Millennium (ed. Aref, H. & Phillips, J. W.), pp. 389412. Kluwer.
Demmel, J. W., Gilbert, J. R. & Li, X. S. 1999 An asynchronous parallel supernodal algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal. Applics 20 (4), 915952.
E, W. & Engquist, B. 1997 Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Maths 50 (12), 12871293.
E, W. & Liu, J. G. 1996 Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124 (2), 368382.
Elliott, J. W., Smith, F. T. & Cowley, S. J. 1983 Breakdown of boundary layers: (i) on moving surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow. Geophys. Astrophys. Fluid Dyn. 25 (1–2), 77138.
Gamet, L., Ducros, F., Nicoud, F. & Poinsot, T. 1999 Compact finite difference schemes on non-uniform meshes: application to direct numerical simulations of compressible flows. Intl J. Numer. Meth. Fluids 29 (2), 159191.
Gargano, F., Sammartino, M. & Sciacca, V. 2009 Singularity formation for Prandtl’s equations. Physica D 238 (19), 19751991.
Gargano, F., Sammartino, M. & Sciacca, V. 2011 High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex. Comput. Fluids 52, 7391.
Gargano, F., Sammartino, M., Sciacca, V. & Cassel, K. W. 2014 Analysis of complex singularities in high-Reynolds-number Navier–Stokes solutions. J. Fluid Mech. 747, 381421.
Gérard-Varet, D. & Dormy, E. 2010 On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23 (2), 591609.
Gérard-Varet, D. & Masmoudi, N. 2015 Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. 48 (6), 12731325.
Goldstein, S. 1948 On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Math. 1 (1), 4369.
Grenier, E. 2000 On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53, 10671091.
Grenier, E., Guo, Y. & Nguyen, T. T. 2015 Spectral stability of Prandtl boundary layers: an overview. Analysis 35 (4), 343355.
Grenier, E., Guo, Y. & Nguyen, T. T. 2016 Spectral instability of characteristic boundary layer flows. Duke Math. J. 165 (16), 30853146.
Grenier, E. & Nguyen, T. T.2018 Sublayer of Prandtl boundary layers. Arch. Rat. Mech. Anal. doi:10.1007/s00205-018-1235-3.
Gresho, P. M. 1991 Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23 (1), 413453.
Heisenberg, W. 1924 Über Stabilität und Turbulenz von Flüssigkeitsströmen. Ann. Physik 74, 577627.
Hughes, T. H. & Reid, W. H. 1965 The stability of laminar boundary layers at separation. J. Fluid Mech. 23 (04), 737747.
Ingham, D. B. 1984 Unsteady separation. J. Comput. Phys. 53 (1), 9099.
von Kármán, T. 1921 Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1 (4), 233252; Engl. transl. in NACA TM 1092 (1946).
Kato, T. 1972 Nonstationary flows of viscous and ideal fluids in ℝ3 . J. Funct. Anal. 9, 296305.
Kato, T. 1984 Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In Seminar on Nonlinear Partial Differential Equations, pp. 8598. MSRI.
Keetels, G. H., Kramer, W., Clercx, H. & van Heijst, G. J. 2011 On the Reynolds number scaling of vorticity production at no-slip walls during vortex–wall collisions. Theor. Comput. Fluid Dyn. 25, 293300.
Kelliher, J. P. 2007 On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56 (4), 17111722.
Kramer, W., Clercx, H. & van Heijst, G. J. 2007 Vorticity dynamics of a dipole colliding with a no-slip wall. Phys. Fluids 19, 126603.
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.
Li, X. S., Demmel, J. W., Gilbert, J. R., Grigori, L., Shao, M. & Yamazaki, I.1999 SuperLU Users’ Guide. Tech. Rep. LBNL-44289. Lawrence Berkeley National Laboratory,∼xiaoye/SuperLU/superlu_ug.pdf. Last update: August 2011.
Lin, C. C. 1967 The Theory of Hydrodynamic Stability. Cambridge University Press.
Maekawa, Y. 2013 Solution formula for the vorticity equations in the half-plane with application to high vorticity creation at zero viscosity limit. Adv. Differ. Equ. 18 (1/2), 101146.
Maekawa, Y. 2014 On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Maths 67 (7), 10451128.
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Nguyen van yen, R., Farge, M. & Schneider, K. 2009 Wavelet regularization of a Fourier–Galerkin method for solving the 2D incompressible Euler equations. ESAIM: Proc. 29, 89107.
Nguyen van yen, R., Farge, M. & Schneider, K. 2011 Energy dissipating structures produced by walls in two-dimensional flows at vanishing viscosity. Phys. Rev. Lett. 106 (18), 184502.
Nguyen van yen, R., Kolomenskiy, D. & Schneider, K. 2014 Approximation of the Laplace and Stokes operators with Dirichlet boundary conditions through volume penalization: a spectral viewpoint. Numer. Math. 128, 301338.
Obabko, A. V. & Cassel, K. W. 2002 Navier–Stokes solutions of unsteady separation induced by a vortex. J. Fluid Mech. 465, 99130.
Oleinik, O. A. 1966 On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30 (5), 951974.
Orlandi, P. 1990 Vortex dipole rebound from a wall. Phys. Fluids A 2, 14291436.
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991a Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re . J. Fluid Mech. 232, 99131.
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991b Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary-layer theory. J. Fluid Mech. 232, 133165.
Prandtl, L. 1904 Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Proceedings of the 3rd International Mathematical Congress, Heidelberg, pp. 484491.
Prandtl, L. 1921 Bemerkungen über die Entstehung der Turbulenz. Z. Angew. Math. Mech. 1 (6), 431436.
Rayleigh, Lord 1880 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 11 (1), 5770.
Reed, H. L., Saric, W. S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28 (1), 389428.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
le Rond d’Alembert, J.-B. 1768 Paradoxe proposé aux géomètres sur la résistance des fluides. In Opuscules Mathématiques, vol. 5, chap. XXXIV, pp. 132138. Briasson.
Sammartino, M. & Caflisch, R. E. 1998 Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. Commun. Math. Phys. 192, 433491.
Schlichting, H. 1979 Boundary Layer Theory. McGraw-Hill.
Schubauer, G. B. & Skramstad, H. K. 1947 Laminar boundary layer oscillations and transitions on a flat plate. J. Aero. Sci. 14, 6976; also NACA Report 909 (1948).
Sears, W. R. & Telionis, D. P. 1975 Boundary-layer separation in unsteady flow. SIAM J. Appl. Maths 28 (1), 215235.
Smith, F. T. 1988 Finite-time break-up can occur in any unsteady interacting boundary layer. Mathematika 35 (02), 256273.
Sommerfeld, A. 1909 Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegung. In Proceedings of the 4th International Mathematical Congress, Rome 1908, vol. 3, pp. 116124.
Stewartson, K. 1974 Multistructured boundary layers on flat plates and related bodies. In Adv. Appl. Mech., vol. 14, pp. 145239. Academic Press.
Sutherland, D., Macaskill, C. & Dritschel, D. G. 2013 The effect of slip length on vortex rebound from a rigid boundary. Phys. Fluids 25 (9), 093104.
Temam, R. & Wang, X. 1997 The convergence of the solutions of the Navier–Stokes equations to that of the Euler equations. Appl. Math. Lett. 10 (5), 2933.
Tietjens, O. 1925 Beiträge zur Entstehung der Turbulenz. Z. Angew. Math. Mech. 5 (3), 200217.
Tollmien, W. 1929 Über die Entstehung der Turbulenz. Nachr. Ges. Wiss. Göttingen, Math.-Physik. Klasse 2144; Engl. transl. in NACA Tech. Rep. 609 (1931).
Van Dommelen, L.1981 Unsteady boundary layer separation. PhD thesis, Cornell University.
Van Dommelen, L. L. & Cowley, S. J. 1990 On the Lagrangian description of unsteady boundary-layer separation. Part 1. General theory. J. Fluid Mech. 210, 593626.
Van Dommelen, L. L. & Shen, S. F. 1980 The spontaneous generation of the singularity in a separating laminar boundary layer. J. Comput. Phys. 38 (2), 125140.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: