Skip to main content Accessibility help

Energy spectra in turbulent bubbly flows

  • Vivek N. Prakash (a1) (a2), J. Martínez Mercado (a1), Leen van Wijngaarden (a1), E. Mancilla (a1) (a3), Y. Tagawa (a1) (a4), Detlef Lohse (a1) (a5) and Chao Sun (a1) (a6)...


We conduct experiments in a turbulent bubbly flow to study the nature of the transition between the classical $-5/3$ energy spectrum scaling for a single-phase turbulent flow and the $-3$ scaling for a swarm of bubbles rising in a quiescent liquid and of bubble-dominated turbulence. The bubblance parameter (Lance & Bataille J. Fluid Mech., vol. 222, 1991, pp. 95–118; Rensen et al., J. Fluid Mech., vol. 538, 2005, pp. 153–187), which measures the ratio of the bubble-induced kinetic energy to the kinetic energy induced by the turbulent liquid fluctuations before bubble injection, is often used to characterise bubbly flow. We vary the bubblance parameter from $b=\infty$ (pseudoturbulence) to $b=0$ (single-phase flow) over 2–3 orders of magnitude (0.01–5) to study its effect on the turbulent energy spectrum and fluctuations in liquid velocity. The probability density functions (PDFs) of the fluctuations in liquid velocity show deviations from the Gaussian profile for $b>0$ , i.e. when bubbles are present in the system. The PDFs are asymmetric with higher probability in the positive tails. The energy spectra are found to follow the $-3$ scaling at length scales smaller than the size of the bubbles for bubbly flows. This $-3$ spectrum scaling holds not only in the well-established case of pseudoturbulence, but surprisingly in all cases where bubbles are present in the system ( $b>0$ ). Therefore, it is a generic feature of turbulent bubbly flows, and the bubblance parameter is probably not a suitable parameter to characterise the energy spectrum in bubbly turbulent flows. The physical reason is that the energy input by the bubbles passes over only to higher wavenumbers, and the energy production due to the bubbles can be directly balanced by the viscous dissipation in the bubble wakes as suggested by Lance & Bataille (1991). In addition, we provide an alternative explanation by balancing the energy production of the bubbles with viscous dissipation in the Fourier space.


Corresponding author

Email address for correspondence:


Hide All
van den Berg, T. H., Wormgoor, W. D., Luther, S. & Lohse, D. 2011 Phase-sensitive constant temperature anemometry. Macromol. Mater. Engng 296, 230237.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.
Cui, Z. & Fan, L. S. 2004 Turbulence energy distributions in bubbling gas–liquid and gas–liquid–solid flow systems. Chem. Engng Sci. 59, 17551766.
Deckwer, B. D. 1992 Bubble Column Reactors, 1st edn. Wiley.
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of freely rising or falling bodies. Annu. Rev. Fluid Mech. 44, 97121.
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly water–air flow. J. Fluid Mech. 222, 95118.
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.
Martinez Mercado, J., Chehata, D., van Gils, D. P. M., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.
Martinez Mercado, J., Palacios Morales, C. & Zenit, R. 2007 Measurements of pseudoturbulence intensity in monodispersed bubbly liquids for $10<Re<500$ . Phys. Fluids 19, 103302.
Martinez Mercado, J., Prakash, V. N., Tagawa, Y., Sun, C. & Lohse, D. 2012 Lagrangian statistics of light particles in turbulence. Phys. Fluids 24, 055106.
Mazzitelli, I. & Lohse, D. 2009 Evolution of energy in flow driven by rising bubbles. Phys. Rev. E 79, 066317.
Mendez-Diaz, S., Serrano-Garcia, J. C., Zenit, R. & Hernandez-Cordero, J. A. 2013 Power spectral distributions of pseudo-turbulent bubbly flows. Phys. Fluids 25, 043303.
Mudde, R. F., Groen, J. S. & van der Akker, H. E. A. 1997 Liquid velocity field in a bubble column: LDA experiments. Chem. Engng Sci. 52, 42174224.
Poorte, R. E. G. & Biesheuvel, A. 2002 Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech. 461, 127154.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Prakash, V. N., Tagawa, Y., Calzavarini, E., Martinez Mercado, J., Toschi, F., Lohse, D. & Sun, C. 2012 How gravity and size affect the acceleration statistics of bubbles in turbulence. New J. Phys. 14, 105017.
Rensen, J., Luther, S. & Lohse, D. 2005 The effects of bubbles on developed turbulence. J. Fluid Mech. 538, 153187.
Riboux, G., Legendre, D. & Risso, F. 2013 A model of bubble-induced turbulence based on large-scale wake interactions. J. Fluid Mech. 719, 362387.
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.
Risso, F. 2011 Theoretical model for $k^{-3}$ spectra in dispersed multiphase flows. Phys. Fluids 23, 011701.
Risso, F. & Ellingsen, K. 2002 Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395410.
Risso, F., Roig, V., Amoura, Z., Riboux, G. & Billet, A. M. 2008 Wake attenuation in large Reynolds number dispersed two-phase flows. Phil. Trans. R. Soc. Lond. A 366, 21772190.
Roghair, I., Martínez Mercado, J., Van Sint Annaland, M., Kuipers, J. A. M., Sun, C. & Lohse, D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations versus experiments. Intl J. Multiphase Flow 37, 16.
Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Energy spectra in turbulent bubbly flows

  • Vivek N. Prakash (a1) (a2), J. Martínez Mercado (a1), Leen van Wijngaarden (a1), E. Mancilla (a1) (a3), Y. Tagawa (a1) (a4), Detlef Lohse (a1) (a5) and Chao Sun (a1) (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.