Skip to main content
×
Home
    • Aa
    • Aa

Enhanced sedimentation in settling tanks with inclined walls

  • Andreas Acrivos (a1) and Eric Herbolzheimer (a1)
Abstract

Using the principles of continuum mechanics, a theory is developed for describing quantitatively the sedimentation of small particles in vessels having walls that are inclined to the vertical. The theory assumes that the flow is laminar and that the particle Reynolds number is small, but c0, the concentration in the suspension, and the vessel geometry are left arbitrary. The settling rate S is shown to depend upon two dimensionless groups, in addition to the vessel geometry: a sedimentation Reynolds number R, typically O(1)-O(10); and Λ, the ratio of a sedimentation Grashof number to R, which is typically very large. By means of an asymptotic analysis it is then concluded that, as Λ → ∞ and for a given geometry, S can be predicted from the well-known Ponder-Nakamura-Kuroda formula which was obtained using only kinematic arguments. The present theory also gives an expression for the thickness of the clear-fluid slit that forms underneath the downward-facing segment of the vessel walls, as well as for the velocity profile both in this slit and in the adjoining suspension.

The sedimentation rate and thickness of the clear-fluid slit were also measured in a vessel consisting of two parallel plates under the following set of conditions: c0 ≤ 0·1, RO(1), O(10)5 ≤ Λ ≤ O(107) and 0° ≤ α ≤ 50°, where α is the angle of inclination. Excellent agreement was obtained with the theoretical predictions. This suggests that the deviations from the Ponder-Nakamura-Kuroda formula reported in the literature are probably due to a flow instability which causes the particles to resuspend and thereby reduces the efficiency of the process.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 229 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.