Skip to main content
    • Aa
    • Aa

Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

  • Christian Diddens (a1) (a2), Huanshu Tan (a1), Pengyu Lv (a1), Michel Versluis (a1), J. G. M. Kuerten (a2) (a3), Xuehua Zhang (a1) (a4) and Detlef Lohse (a1) (a5)...

The Greek aperitif Ouzo is not only famous for its specific anise-flavoured taste, but also for its ability to turn from a transparent miscible liquid to a milky-white coloured emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions (Tan et al., Proc. Natl Acad. Sci. USA, vol. 113 (31), 2016, pp. 8642–8647). Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water–ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-particle-image-velocimetry measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence.

Corresponding author
Email addresses for correspondence:,
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. Bennacer  & K. Sefiane 2014 Vortices, dissipation and flow transition in volatile binary drops. J. Fluid Mech. 749, 649665.

A.-M. Cazabat  & G. Guéna 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6 (12), 25912612.

A. K. H. Cheng , D. M. Soolaman  & H.-Z. Yu 2006 Evaporation of microdroplets of ethanol–water mixtures on gold surfaces modified with self-assembled monolayers. J. Phys. Chem. B 110 (23), 1126711271.

J. R. E. Christy , Y. Hamamoto  & K. Sefiane 2011 Flow transition within an evaporating binary mixture sessile drop. Phys. Rev. Lett. 106 (20), 205701.

S. Chu  & A. Prosperetti 2016 Dissolution and growth of a multicomponent drop in an immiscible liquid. J. Fluid Mech. 798, 787811.

N. J. Cira , A. Benusiglio  & M. Prakash 2015 Vapour-mediated sensing and motility in two-component droplets. Nature 519 (7544), 446450.

R. D. Deegan , O. Bakajin , T. F. Dupont , G. Huber , S. R. Nagel  & T. A. Witten 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.

C. Diddens 2017 Detailed finite element method modeling of evaporating multi-component droplets. J. Comput. Phys. 340, 670687.

C. Diddens , J. G. M. Kuerten , C. W. M. van der Geld  & H. M. A. Wijshoff 2017 Modeling the evaporation of sessile multi-component droplets. J. Colloid Interface Sci. 487, 426436.

E. Dietrich , M. Rump , P. Lv , E. S. Kooij , H. J. W. Zandvliet  & D. Lohse 2016a Segregation in dissolving binary-component sessile droplets. J. Fluid Mech. 812, 349369.

P. E. Farrell , M. D. Piggott , C. C. Pain , G. J. Gorman  & C. R. Wilson 2009 Conservative interpolation between unstructured meshes via supermesh construction. Comput. Meth. Appl. Mech. Engng 198 (33–36), 26322642.

F. Girard , M. Antoni , S. Faure  & A. Steinchen 2006 Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22 (26), 1108511091.

F. Girard , M. Antoni  & K. Sefiane 2008 On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24 (17), 92079210.

B. González , N. Calvar , E. Gómez  & Á. Domínguez 2007 Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. 39 (12), 15781588.

J.-P. E. Grolier  & E. Wilhelm 1981 Excess volumes and excess heat capacities of water + ethanol at 298.15 K. Fluid Phase Equilib. 6 (3–4), 283287.

H. Hu  & R. G. Larson 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.

H. Hu  & R. G. Larson 2005 Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9), 39723980.

P. Innocenzi , L. Malfatti , S. Costacurta , T. Kidchob , M. Piccinini  & A. Marcelli 2008 Evaporation of ethanol and ethanol–water mixtures studied by time-resolved infrared spectroscopy. J. Phys. Chem. A 112 (29), 65126516.

H. Kim , F. Boulogne , E. Um , I. Jacobi , E. Button  & H. A. Stone 2016 Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116 (12), 124501.

I. Langmuir  & V. J. Schaefer 1943 Rates of evaporation of water through compressed monolayers on water. J. Franklin Inst. 235 (2), 119162.

C. Liu , E. Bonaccurso  & H.-J. Butt 2008 Evaporation of sessile water/ethanol drops in a controlled environment. Phys. Chem. Chem. Phys. 10 (47), 7150.

A. Logg 2012 Automated Solution of Differential Equations by the Finite Element Method the FEniCS Book. Springer.

D. Lohse  & X. Zhang 2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87 (3), 9811035.

H. Machrafi , A. Rednikov , P. Colinet  & P. C. Dauby 2010 Bénard instabilities in a binary-liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 349 (1), 331353.

V. Mathai , E. Calzavarini , J. Brons , C. Sun  & D. Lohse 2016 Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117, 024501.

J. L. G. Oliveira , C. W. M. van der Geld  & J. G. M. Kuerten 2015 Lagrangian velocity and acceleration statistics of fluid and inertial particles measured in pipe flow with 3d particle tracking velocimetry. Intl J. Multiphase Flow 73, 97107.

S. Pařez , G. Guevara-Carrion , H. Hasse  & J. Vrabec 2013 Mutual diffusion in the ternary mixture of water + methanol + ethanol and its binary subsystems. Phys. Chem. Chem. Phys. 15 (11), 3985.

V. M. Rodrigues , P. T. V. Rosa , M. O. M. Marques , A. J. Petenate , M. Meireles  & A. Angela 2003 Supercritical extraction of essential oil from aniseed (pimpinella anisum L) using CO2 : Solubility, kinetics, and composition data. J. Agr. Food Chem. 51 (6), 15181523.

S. M. Rowan , M. I. Newton , F. W. Driewer  & G. McHale 2000 Evaporation of microdroplets of azeotropic liquids. J. Phys. Chem. B 104 (34), 82178220.

K. Sefiane  & R. Bennacer 2011 An expression for droplet evaporation incorporating thermal effects. J. Fluid Mech. 667, 260271.

K. Sefiane , S. David  & M. E. R. Shanahan 2008a Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 112 (36), 1131711323.

K. Sefiane , J. R. Moffat , O. K. Matar  & R. V. Craster 2008b Self-excited hydrothermal waves in evaporating sessile drops. Appl. Phys. Lett. 93 (7), 074103.

K. Sefiane , L. Tadrist  & M. Douglas 2003 Experimental study of evaporating water–ethanol mixture sessile drop: influence of concentration. Intl J. Heat Mass Transfer 46 (23), 45274534.

L. Shi , P. Shen , D. Zhang , Q. Lin  & Q. Jiang 2009 Wetting and evaporation behaviors of water–ethanol sessile drops on PTFE surfaces. Surf. Interface Anal. 41 (12–13), 951955.

N. L. Sitnikova , R. Sprik , G. Wegdam  & E. Eiser 2005 Spontaneously formed trans-anethol/water/alcohol emulsions: mechanism of formation and stability. Langmuir 21 (16), 70837089.

B. Sobac  & D. Brutin 2012 Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate. Phys. Fluids 24 (3), 032103.

H. Tan , C. Diddens , P. Lv , J. G. M. Kuerten , X. Zhang  & D. Lohse 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proc. Natl. Acad. Sci. USA 113 (31), 86428647.

H. Tan , C. Diddens , M. Versluis , H.-J. Butt , D. Lohse  & X. Zhang 2017 Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matt. 13, 27492759.

W. Thielicke  & E. Stamhuis 2014 PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Software 2 (1), e30.

G. Vazquez , E. Alvarez  & J. M. Navaza 1995 Surface tension of alcohol water + water from 20 to 50 °C. J. Chem. Engng Data 40 (3), 611614.

S. A. Vitale  & J. L. Katz 2003 Liquid droplet dispersions formed by homogeneous liquid–liquid nucleation: ‘the Ouzo effect’. Langmuir 19 (10), 41054110.

Z. Wang , X.-F. Peng , A. S. Mujumdar , A. Su  & D.-J. Lee 2008 Evaporation of ethanol–water mixture drop on horizontal substrate. Dry. Technol. 26 (6), 806810.

R. Yano , Y. Fukuda  & T. Hashi 1988 Thermal conductivity measurement of water–ethanol solutions by the laser-induced transient grating method. Chem. Phys. 124 (2), 315319.

X. Zhang , Z. Lu , H. Tan , L. Bao , Y. He , C. Sun  & D. Lohse 2015 Formation of surface nanodroplets under controlled flow conditions. Proc. Natl. Acad. Sci. USA 112 (30), 92539257.

X. H. Zhang  & W. Ducker 2007 Formation of interfacial nanodroplets through changes in solvent quality. Langmuir 23 (25), 1247812480.

A. Zuend , C. Marcolli , A. M. Booth , D. M. Lienhard , V. Soonsin , U. K. Krieger , D. O. Topping , G. McFiggans , T. Peter  & J. H. Seinfeld 2011 New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11 (17), 91559206.

A. Zuend , C. Marcolli , B. P. Luo  & T. Peter 2008 A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. Atmos. Chem. Phys. 8 (16), 45594593.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title

Diddens et al. supplementary movie
Flow in the ternary Ouzo droplet by visualizing the oil microdroplets via confocal microscopy (figure 11)

 Video (67.5 MB)
67.5 MB

Diddens et al. supplementary movie
Simulation of the ternary Ouzo droplet (figure 6)

 Video (70.3 MB)
70.3 MB

Diddens et al. supplementary movie
Behavior of the oil microdroplets at the rim and on the substrate by confocal microscopy (figure 12)

 Video (71.0 MB)
71.0 MB

Diddens et al. supplementary movie
Ethanol concentration at the interface and velocity near the substrate in the water-ethanol droplet obtained by numerical simulation (figure 8, figure 9(g-l))

 Video (88.8 MB)
88.8 MB

Diddens et al. supplementary movie
Velocity in the water-ethanol droplet obtained by the micro-PIV technique (figure 9(a-f))

 Video (70.7 MB)
70.7 MB

Diddens et al. supplementary movie
Simulation of the binary water-ethanol droplet (figure 4)

 Video (48.4 MB)
48.4 MB

Diddens et al. supplementary movie
Simulation of the pure water droplet (figure 3)

 Video (25.5 MB)
25.5 MB


Altmetric attention score

Full text views

Total number of HTML views: 17
Total number of PDF views: 141 *
Loading metrics...

Abstract views

Total abstract views: 263 *
Loading metrics...

* Views captured on Cambridge Core between 20th June 2017 - 24th July 2017. This data will be updated every 24 hours.