Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-08-17T23:11:14.823Z Has data issue: false hasContentIssue false

Evolution and instability of the tip vortices behind a yawed wind turbine

Published online by Cambridge University Press:  30 July 2025

Chao Li
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
An-Kang Gao
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Luoqin Liu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Xi-Yun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Richard J.A.M. Stevens
Affiliation:
Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, J.M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
*
Corresponding author: Luoqin Liu, luoqinliu@ustc.edu.cn

Abstract

Yaw control can effectively enhance wind farm power output, but the vorticity distribution and coherent structures in yawed turbine wakes remain poorly understood. We propose a physical model capable of accurately predicting tip vortex dynamics from their generation to destabilisation. This model integrates a point vortex framework with advanced blade element momentum theory and vortex cylinder theory for yawed turbines. Comparisons with large eddy simulations demonstrate that the model effectively predicts the vorticity distribution of tip vortices and the wake profile of yawed turbines. Finally, we employ sparsity-promoting dynamic mode decomposition to analyse the dynamics of the far wake. Our analysis reveals four primary mode types: (i) the averaged mode; (ii) shear modes; (iii) harmonic modes; and (iv) merging modes. Under yawed conditions, these modes become asymmetric, leading to interactions between the tip and root vortex modes. This direct interaction plays a critical role during the formation process of the counter-rotating vortex pair observed in yawed wakes.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abraham, A., Martínez-Tossas, L.A. & Hong, J. 2021 Mechanisms of dynamic near-wake modulation of a utility-scale wind turbine. J. Fluid Mech. 926, A29.10.1017/jfm.2021.737CrossRefGoogle Scholar
Albertson, J.D. 1996 Large eddy simulation of land-atmosphere interaction. PhD thesis, University of California, USA.Google Scholar
Anderson, J.D. 2001 Fundamentals of Aerodynamics. 3rd edn. McGraw-Hill.Google Scholar
Bastankhah, M. & Porté-Agel, F. 2016 Experimental and theoretical study of wind turbine wakes in yawed conditions. J. Fluid Mech. 806, 506541.10.1017/jfm.2016.595CrossRefGoogle Scholar
Bastankhah, M. & Porté-Agel, F. 2019 Wind farm power optimization via yaw angle control: a wind tunnel study. J. Renew. Sustain. Energy 11 (2), 023301.10.1063/1.5077038CrossRefGoogle Scholar
Bastankhah, M., Shapiro, C.R., Shamsoddin, S., Gayme, D.F. & Meneveau, C. 2022 A vortex sheet based analytical model of the curled wake behind yawed wind turbines. J. Fluid Mech. 933, A2.10.1017/jfm.2021.1010CrossRefGoogle Scholar
Biswas, N. & Buxton, O.R.H. 2024 a Effect of tip speed ratio on coherent dynamics in the near wake of a model wind turbine. J. Fluid Mech. 979, A34.10.1017/jfm.2023.1095CrossRefGoogle Scholar
Biswas, N. & Buxton, O.R.H. 2024 b Energy exchanges between coherent modes in the near wake of a wind turbine model at different tip speed ratios. J. Fluid Mech. 996, A8.10.1017/jfm.2024.581CrossRefGoogle Scholar
Blondel, F. 2023 Brief communication: a momentum-conserving superposition method applied to the super-Gaussian wind turbine wake model. Wind Energy Sci. 8 (2), 141147.10.5194/wes-8-141-2023CrossRefGoogle Scholar
Blondel, F. & Cathelain, M. 2020 An alternative form of the super-Gaussian wind turbine wake model. Wind Energy Sci. 5 (3), 12251236.10.5194/wes-5-1225-2020CrossRefGoogle Scholar
Boersma, S., Doekemeijer, B.M., Gebraad, P.M.O., Fleming, P.A., Annoni, J., Scholbrock, A.K., Frederik, J.A. & van Wingerden, J.W. 2017 A tutorial on control-oriented modeling and control of wind farms. In 2017 American Control Conference, May 24–26, 2017, Seattle, USA, pp. 118. IEEE.10.23919/ACC.2017.7962923CrossRefGoogle Scholar
Bossuyt, J., Scott, R., Ali, N. & Cal, R.B. 2021 Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines. J. Fluid Mech. 917, A3.10.1017/jfm.2021.237CrossRefGoogle Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M.B. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.10.1063/1.1839152CrossRefGoogle Scholar
Branlard, E. & Gaunaa, M. 2015 Cylindrical vortex wake model: right cylinder. Wind Energy 18 (11), 19731987.10.1002/we.1800CrossRefGoogle Scholar
Branlard, E. & Gaunaa, M. 2016 Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors. Wind Energy 19 (2), 345358.10.1002/we.1838CrossRefGoogle Scholar
Burton, T., Sharpe, D., Jenkins, N. & Bossanyi, E. 2001 Wind Energy Handbook. John Wiley & Sons.10.1002/0470846062CrossRefGoogle Scholar
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulations of fully developed wind-turbine array boundary layers. Phys. Fluids 22 (1), 015110.10.1063/1.3291077CrossRefGoogle Scholar
Chamorro, L.-P., Arndt, R.E.A. & Sotiropoulos, F. 2012 Reynolds number dependence of turbulence statistics in the wake of wind turbines. Wind Energy 15 (5), 733742.10.1002/we.501CrossRefGoogle Scholar
Chamorro, L.P., Hill, C., Morton, S., Ellis, C., Arndt, R.E.A. & Sotiropoulos, F. 2013 On the interaction between a turbulent open channel flow and an axial-flow turbine. J. Fluid Mech. 716, 658670.10.1017/jfm.2012.571CrossRefGoogle Scholar
Di Mascio, A., Muscari, R. & Dubbioso, G. 2014 On the wake dynamics of a propeller operating in drift. J. Fluid Mech. 754, 263307.10.1017/jfm.2014.390CrossRefGoogle Scholar
Dong, G., Qin, J., Li, Z. & Yang, X. 2023 Characteristics of wind turbine wakes for different blade designs. J. Fluid Mech. 965, A15.10.1017/jfm.2023.385CrossRefGoogle Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.10.1017/jfm.2011.150CrossRefGoogle Scholar
Gadde, S.N., Stieren, A. & Stevens, R.J.A.M. 2021 Large-eddy simulations of stratified atmospheric boundary layers: comparison of different subgrid models. Boundary-Layer Meteorol. 178 (3), 363382.10.1007/s10546-020-00570-5CrossRefGoogle Scholar
Gambuzza, S. & Ganapathisubramani, B. 2023 The influence of free stream turbulence on the development of a wind turbine wake. J. Fluid Mech. 963, A19.10.1017/jfm.2023.302CrossRefGoogle Scholar
Gebraad, P.M.O., Teeuwisse, F.W., van Wingerden, J.W., Fleming, P.A., Ruben, S.D., Marden, J.R. & Pao, L.Y. 2016 Wind plant power optimization through yaw control using a parametric model for wake effects – a CFD simulation study. Wind Energy 19 (1), 95114.10.1002/we.1822CrossRefGoogle Scholar
Gupta, B.P. & Loewy, R.G. 1974 Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices. AIAA J. 12 (10), 13811387.10.2514/3.49493CrossRefGoogle Scholar
Gupta, V. & Wan, M. 2019 Low-order modelling of wake meandering behind turbines. J. Fluid Mech. 877, 534560.10.1017/jfm.2019.619CrossRefGoogle Scholar
Heck, K.S., Johlas, H.M. & Howland, M.F. 2023 Modelling the induction, thrust and power of a yaw-misaligned actuator disk. J. Fluid Mech. 959, A9.10.1017/jfm.2023.129CrossRefGoogle Scholar
Hong, J., Toloui, M., Chamorro, L.P., Guala, M., Howard, K., Riley, S., Tucker, J. & Sotiropoulos, F. 2014 Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine. Nat. Commun. 5 (1), 4216.10.1038/ncomms5216CrossRefGoogle ScholarPubMed
Howland, M.F., Bossuyt, J., Martínez-Tossas, L.A., Meyers, J. & Meneveau, C. 2016 Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions. J. Renew. Sustain. Energy 8 (4), 043301.10.1063/1.4955091CrossRefGoogle Scholar
Howland, M.F., Lele, S.K. & Dabiri, J.O. 2019 Wind farm power optimization through wake steering. Proc. Natl Acad. Sci. USA 116 (29), 1449514500.10.1073/pnas.1903680116CrossRefGoogle ScholarPubMed
Howland, M.F., Quesada, J.B., Martínez, J.P., Larrañaga, F.P., Yadav, N., Chawla, J.S., Sivaram, V. & Dabiri, J.O. 2022 Collective wind farm operation based on a predictive model increases utility-scale energy production. Nat. Energy 7 (9), 818827.10.1038/s41560-022-01085-8CrossRefGoogle Scholar
Ivanell, S., Mikkelsen, R., Sørensen, J.N. & Henningson, D. 2010 Stability analysis of the tip vortices of a wind turbine. Wind Energy 13 (8), 705715.10.1002/we.391CrossRefGoogle Scholar
Jonkman, J., Butterfield, S., Musial, W. & Scott, G. 2009 Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory.10.2172/947422CrossRefGoogle Scholar
Jovanović, M.R., Schmid, P.J. & Nichols, J.W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.10.1063/1.4863670CrossRefGoogle Scholar
Kinjangi, D.K. & Foti, D. 2023 Characterization of energy transfer and triadic interactions of coherent structures in turbulent wakes. J. Fluid Mech. 971, A7.10.1017/jfm.2023.641CrossRefGoogle Scholar
Kleine, V.G., Hanifi, A. & Henningson, D.S. 2023 Non-iterative vortex-based smearing correction for the actuator line method. J. Fluid Mech. 961, A29.10.1017/jfm.2023.237CrossRefGoogle Scholar
Koopman, B.O. 1931 Hamiltonian systems and transformation in Hilbert space. Proc. Natl Acad. Sci. USA 17 (5), 315318.10.1073/pnas.17.5.315CrossRefGoogle ScholarPubMed
Korb, H., Asmuth, H. & Ivanell, S. 2023 The characteristics of helically deflected wind turbine wakes. J. Fluid Mech. 965, A2.10.1017/jfm.2023.390CrossRefGoogle Scholar
Kutz, J.N., Brunton, S.L., Brunton, B.W. & Proctor, J.L. 2016 Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM.10.1137/1.9781611974508CrossRefGoogle Scholar
Landgrebe, A.J. 1972 The wake geometry of a hovering helicopter rotor and its influence on rotor performance. J. Am. Helicopter Soc. 17 (4), 315.10.4050/JAHS.17.4.3CrossRefGoogle Scholar
Li, C., Liu, L. & Lu, X. 2024 A grouping strategy for reinforcement learning-based collective yaw control of wind farms. Theor. Appl. Mech. Lett. 14 (1), 100491.10.1016/j.taml.2024.100491CrossRefGoogle Scholar
Li, Z., Dong, G. & Yang, X. 2022 Onset of wake meandering for a floating offshore wind turbine under side-to-side motion. J. Fluid Mech. 934, A29.10.1017/jfm.2021.1147CrossRefGoogle Scholar
Lignarolo, L.E.M., Ragni, D., Krishnaswami, C., Chen, Q., Simão Ferreira, C.J. & van Bussel, G.J.W. 2014 Experimental analysis of the wake of a horizontal-axis wind-turbine model. Renew. Energy 70, 3146.10.1016/j.renene.2014.01.020CrossRefGoogle Scholar
Lignarolo, L.E.M., Ragni, D., Scarano, F., Ferreira, C.J.S. & van Bussel, G.J.W. 2015 Tip-vortex instability and turbulent mixing in wind-turbine wakes. J. Fluid Mech. 781, 467493.10.1017/jfm.2015.470CrossRefGoogle Scholar
Liu, L., Franceschini, L., Oliveira, D.F., Galeazzo, F.C.C., Carmo, B.S. & Stevens, R.J.A.M. 2022 Evaluating the accuracy of the actuator line model against blade element momentum theory in uniform inflow. Wind Energy 25 (6), 10461059.10.1002/we.2714CrossRefGoogle Scholar
Liu, L. & Stevens, R.J.A.M. 2021 Effects of atmospheric stability on the performance of a wind turbine located behind a three-dimensional hill. Renew. Energy 175, 926935.10.1016/j.renene.2021.05.035CrossRefGoogle Scholar
Liu, L.Q., Wu, J.Z., Su, W.D. & Kang, L.L. 2017 Lift and drag in three-dimensional steady viscous and compressible flow. Phys. Fluids 29 (11), 116105.10.1063/1.4989747CrossRefGoogle Scholar
Lu, J., Li, C., Li, X., Liu, H., Zhang, G., Liu, N. & Liu, L. 2023 Analytical model for the power production of a yaw-misaligned wind turbine. Phys. Fluids 35 (12), 127109.10.1063/5.0174267CrossRefGoogle Scholar
Lumley, J.L. 1967 The Structure of Inhomogeneous Turbulent Flows. Nauka.Google Scholar
Magionesi, F., Dubbioso, G., Muscari, R. & Di Mascio, A. 2018 Modal analysis of the wake past a marine propeller. J. Fluid Mech. 855, 469502.10.1017/jfm.2018.631CrossRefGoogle Scholar
Martínez-Tossas, L.A., Annoni, J., Fleming, P.A. & Churchfield, M.J. 2019 The aerodynamics of the curled wake: a simplified model in view of flow control. Wind Energy Sci. 4 (1), 127138.10.5194/wes-4-127-2019CrossRefGoogle Scholar
Martínez-Tossas, L.A. & Branlard, E. 2020 The curled wake model: equivalence of shed vorticity models. J. Phys. Conf. Ser. 1452 (1), 012069.10.1088/1742-6596/1452/1/012069CrossRefGoogle Scholar
Martínez-Tossas, L.A., Churchfield, M.J., Yilmaz, A.E., Sarlak, H., Johnson, P.L., Sørensen, J.N., Meyers, J. & Meneveau, C. 2018 Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling. J. Renew. Sustain. Energy 10 (3), 033301.10.1063/1.5004710CrossRefGoogle Scholar
Medici, D. 2005 Experimental studies of wind turbine wakes – power optimisation and meandering. PhD Thesis, KTH Royal Institute of Technology, UK.Google Scholar
Melani, P.F., Mohamed, O.S., Cioni, S., Balduzzi, F. & Bianchini, A. 2024 An insight into the capability of the actuator line method to resolve tip vortices. Wind Energy Sci. 9 (3), 601622.10.5194/wes-9-601-2024CrossRefGoogle Scholar
Meneveau, C. 2024 The fluid mechanics of active flow control at very large scales. J. Fluid Mech. 1000, F9.10.1017/jfm.2024.846CrossRefGoogle Scholar
Meyers, J., Bottasso, C., Dykes, K., Fleming, P., Gebraad, P., Giebel, G., Göcmen, T. & van Wingerden, J.W. 2022 Wind farm flow control: prospects and challenges. Wind Energy Sci. 2022 (6), 22712306.10.5194/wes-7-2271-2022CrossRefGoogle Scholar
Mula, S.M. & Tinney, C.E. 2015 A study of the turbulence within a spiralling vortex filament using proper orthogonal decomposition. J. Fluid Mech. 769, 570589.10.1017/jfm.2015.104CrossRefGoogle Scholar
Neunaber, I., Hölling, M., Stevens, R.J.A.M., Schepers, G. & Peinke, J. 2020 Distinct turbulent regions in the wake of a wind turbine and their inflow-dependent locations: the creation of a wake map. Energies 13 (20), 5392.10.3390/en13205392CrossRefGoogle Scholar
Nilsson, K., Shen, W.Z., Sørensen, J.N., Breton, S.-P. & Ivanell, S. 2015 Validation of the actuator line method using near wake measurements of the MEXICO rotor. Wind Energy 18 (3), 499514.10.1002/we.1714CrossRefGoogle Scholar
Okulov, V.L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.10.1017/S0022112004001934CrossRefGoogle Scholar
Okulov, V.L., Naumov, I.V., Mikkelsen, R.F., Kabardin, I.K. & Sørensen, J.N. 2014 A regular Strouhal number for large-scale instability in the far wake of a rotor. J. Fluid Mech. 747, 369380.10.1017/jfm.2014.174CrossRefGoogle Scholar
Okulov, V.L. & Sørensen, J.N. 2007 Stability of helical tip vortices in a rotor far wake. J. Fluid Mech. 576, 125.10.1017/S0022112006004228CrossRefGoogle Scholar
Porté-Agel, F., Bastankhah, M. & Shamsoddin, S. 2020 Wind-turbine and wind-farm flows: a review. Boundary-Layer Meteorol. 174 (1), 159.10.1007/s10546-019-00473-0CrossRefGoogle ScholarPubMed
Sarmast, S., Dadfar, R., Mikkelsen, R.F., Schlatter, P., Ivanell, S., Sørensen, J.N. & Henningson, D.S. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.10.1017/jfm.2014.326CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.10.1017/S0022112010001217CrossRefGoogle Scholar
Schmid, P.J. 2022 Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech. 54 (1), 225254.10.1146/annurev-fluid-030121-015835CrossRefGoogle Scholar
Shapiro, C.R., Gayme, D.F. & Meneveau, C. 2018 Modelling yawed wind turbine wakes: a lifting line approach. J. Fluid Mech. 841, R1.10.1017/jfm.2018.75CrossRefGoogle Scholar
Shapiro, C.R., Gayme, D.F. & Meneveau, C. 2020 Generation and decay of counter-rotating vortices downstream of yawed wind turbines in the atmospheric boundary layer. J. Fluid Mech. 903, R2.10.1017/jfm.2020.717CrossRefGoogle Scholar
Shapiro, C.R., Starke, G.M. & Gayme, D.F. 2022 Turbulence and control of wind farms. Annu. Rev. Control Robot. Auton. Syst. 5 (1), 579602.10.1146/annurev-control-070221-114032CrossRefGoogle Scholar
Sørensen, J.N. 2011 Instability of helical tip vortices in rotor wakes. J. Fluid Mech. 682, 14.10.1017/jfm.2011.277CrossRefGoogle Scholar
Sørensen, J.N., Mikkelsen, R.F., Henningson, D.S., Ivanell, S., Sarmast, S. & Andersen, S.J. 2015 Simulation of wind turbine wakes using the actuator line technique. Phil. Trans. R. Soc. Lond A 373 (2035), 20140071.Google ScholarPubMed
Sørensen, J.N. & Shen, W.Z. 2002 Numerical modeling of wind turbine wakes. J. Fluids Engng 124 (2), 393399.10.1115/1.1471361CrossRefGoogle Scholar
Sørensen, J.N., Shen, W.Z. & Munduate, X. 1998 Analysis of wake states by a full-field actuator disc model. Wind Energy 1 (2), 7388.10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L3.0.CO;2-L>CrossRefGoogle Scholar
Stevens, R.J.A.M., Graham, J. & Meneveau, C. 2014 A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms. Renew. Energy 68, 4650.10.1016/j.renene.2014.01.024CrossRefGoogle Scholar
Stevens, R.J.A.M. & Meneveau, C. 2017 Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49 (1), 311339.10.1146/annurev-fluid-010816-060206CrossRefGoogle Scholar
Strom, B., Polagye, B. & Brunton, S.L. 2022 Near-wake dynamics of a vertical-axis turbine. J. Fluid Mech. 935, A6.10.1017/jfm.2021.1123CrossRefGoogle Scholar
Sun, C., Tian, T., Zhu, X., Hua, O. & Du, Z. 2021 Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition. Energy 227, 120418.10.1016/j.energy.2021.120418CrossRefGoogle Scholar
Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L. & Kutz, J.N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391421.10.3934/jcd.2014.1.391CrossRefGoogle Scholar
Vahidi, D. & Porté-Agel, F. 2022 A physics-based model for wind turbine wake expansion in the atmospheric boundary layer. J. Fluid Mech. 943, A49.10.1017/jfm.2022.443CrossRefGoogle Scholar
Wang, T., Cai, C., Wang, X., Wang, Z., Chen, Y., Hou, C., Zhou, S., Xu, J., Zhang, Y. & Li, Q. 2023 Evolution mechanism of wind turbine wake structure in yawed condition by actuator line method and theoretical analysis. Energy Convers. Manag. 281, 116852.10.1016/j.enconman.2023.116852CrossRefGoogle Scholar
Widnall, S.E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54 (4), 641663.10.1017/S0022112072000928CrossRefGoogle Scholar
Wu, J.Z., Ma, H.Y. & Zhou, M.D. 2006 Vorticity and Vortex Dynamics. Springer.10.1007/978-3-540-29028-5CrossRefGoogle Scholar
Yang, X., Hong, J., Barone, M. & Sotiropoulos, F. 2016 Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines. J. Fluid Mech. 804, 90115.10.1017/jfm.2016.503CrossRefGoogle Scholar
Zong, H. & Porté-Agel, F. 2020 A point vortex transportation model for yawed wind turbine wakes. J. Fluid Mech. 890, A8.10.1017/jfm.2020.123CrossRefGoogle Scholar
Zong, H. & Porté-Agel, F. 2021 Experimental investigation and analytical modelling of active yaw control for wind farm power optimization. Renew. Energy 170, 12281244.10.1016/j.renene.2021.02.059CrossRefGoogle Scholar