Skip to main content
×
Home
    • Aa
    • Aa

The evolution of segregation in dense inclined flows of binary mixtures of spheres

  • Michele Larcher (a1) and James T. Jenkins (a2)
Abstract

We consider the evolution of particle segregation in collisional flows of two types of spheres down rigid bumpy inclines in the absence of sidewalls. We restrict our analysis to dense flows and use an extension of kinetic theory to predict the concentration of the mixture and the profiles of mixture velocity and granular temperature. A kinetic theory for a binary mixture of nearly elastic spheres that do not differ by much in their size or mass is employed to predict the evolution of the concentration fractions of the two types of spheres. We treat situations in which the flow of the mixture is steady and uniform, but the segregation evolves, either in space or in time. Comparisons of the predictions with the results of discrete numerical simulation and with physical experiments are, in general, good.

Copyright
Corresponding author
Email address for correspondence: michele.larcher@unitn.it
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Alonso , M. Satoh  & K. Miyanami 1991 Optimum combination of size ratio, density ratio and concentration to minimize free surface segregation. Powder Technol. 68, 145152.

B. Ö Arnarson  & J. T. Jenkins 2000 Particle segregation in the context of the species momentum balances. In Traffic and Granular Flow ‘99: Social, Traffic and Granular Dynamics (ed. D. Helbing , H. J. Herrmann , M. Schreckenberg  & D. E. Wolf ), pp. 481487. Springer.

B. Ö Arnarson  & J. T. Jenkins 2004 Binary mixtures of inelastic spheres: simplified constitutive theory. Phys. Fluids 16, 45434550.

R. J. Atkin 1976 Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209244.

J. A. Drahun  & J. Bridgwater 1983 The mechanisms of free surface segregation. Powder Technol. 36, 3953.

Y. Fan  & K. M. Hill 2011 Theory for shear-induced segregation of dense granular mixtures. New J. Phys. 13, 095009.

G. Felix  & N. Thomas 2004 Evidence of two effects in the size segregation process in dry granular media. Phys. Rev. E 70, 051307.

V. Garzo  & J. W. Dufty 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.

2004 On dense granular flows. Eur. Phys. J. E 14, 341365.

N. Jain , J. M. Ottino  & R. M. Lueptow 2005b Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granul. Matt. 7, 6981.

M. Jakob  & O. Hungr 2005 Debris-flow Hazards and Related Phenomena. Springer.

J. T. Jenkins 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10, 4752.

J. T. Jenkins  & D. K. Berzi 2010 Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matt. 12, 151158.

J. T. Jenkins  & D. Yoon 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88, 194301.

M. Larcher  & J. T. Jenkins 2013 Segregation and mixture profiles in dense, inclined flows of two types of spheres. Phys. Fluids 25, 113301.

G. Metcalfe  & M. Shattuck 1996 Pattern formation during mixing and segregation of flowing granular materials. Physica A 233, 709717.

N. Mitarai  & H. Nakanishi 2007 Velocity correlations in dense granular shear flows: effects on energy dissipation and normal stress. Phys. Rev. E 75, 031305.

F. J. Muzzio , T. Shinbrot  & B. J. Glasser 2002 Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Technol. 124, 17.

L. E. Silbert , D. Ertas , G. S. Grest , T. C. Halsey , D. Levine  & S. J. Plimpton 2001 Granular flow down an inclined plane. Bagnold scaling and rheology. Phys. Rev. E 64, 051302.

T. Takahashi 2014 Debris Flow: Mechanics, Prediction and Countermeasures, 2nd edn. CRC Press.

A. Thornton , T. Weinhart , S. Luding  & O. Bokhove 2012 Modeling of particle size segregation: calibration using the discrete particle method. Internat. J. Mod. Phys. C 23, 1240014.

S. Torquato 1995 Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51, 31703182.

S. Wiederseiner , N. Andreini , G. Épely-Chauvin , G. Moser , M. Monnereau , J. M. N. T. Gray  & C. Ancey 2011 Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23, 013301.

H. Xu , M. Louge  & A. Reeves 2003 Solutions of the kinetic theory for bounded collisional granular flows. Continuum Mech. Thermodyn. 15, 321349.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 42 *
Loading metrics...

Abstract views

Total abstract views: 104 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd July 2017. This data will be updated every 24 hours.