del Alamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D.
2004
Scaling of the energy spectra of turbulent channels. J. Fluid Mech.
500, 135–144.

Castillo, L. & Johansson, T. G.
2002
The effects of the upstream conditions on a low Reynolds number turbulent boundary layer with zero pressure gradient. J. Turbul.
3 (31), 1–19.

Castillo, L. & Walker, D.
2002
Effect of upstream conditions on the outer flow of turbulent boundary layers. AIAA J.
40 (7), 1292–1299.

Chauhan, K. A. & Nagib, H. M.
2008
On the development of wall-bounded turbulent flows. In IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, pp. 183–189. Springer.

Chauhan, K. A., Nagib, H. M. & Monkewitz, P. A.
2007
On the composite logarithmic profile in zero pressure gradient turbulent boundary layers. In 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, vol. 1, pp. 532–549.

Chauhan, K. A., Nagib, H. M. & Monkewitz, P. A.
2009
Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res.
41, 021404.

Chin, C. C., Hutchins, N., Ooi, A. S. H. & Marusic, I.
2009
Use of direct numerical simualtion (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence. Meas. Sci. Technol.
20, 115401.

Coles, D. E.
1956
The law of the wake in the turbulent boundary layer. J. Fluid Mech.
1, 191–226.

Coles, D. E.1962 The turbulent boundary layer in a compressible fluid. Appendix A: A manual of experimental boundary-layer practice for low-speed flow. *Tech. Rep.* R-403-PR. USAF The Rand Corporation.

DeGraff, D. B. & Eaton, J. K.
2000
Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech.
422, 319–346.

Erm, L. P.1988 Low-Reynolds-number turbulent boundary layers. PhD thesis, The University of Melbourne, Melbourne, Australia.

Erm, L. P. & Joubert, P. N.
1991
Low-Reynolds-number turbulent boundary layer. J. Fluid Mech.
230, 1–44.

Freymuth, P.
1967
Feedback control theory for constant-temperature hot-wire anemometers. Rev. Sci. Instrum.
38 (5), 677–681.

Ganapathisubramani, B., Hutchins, N., Monty, J. P., Chung, D. & Marusic, I.
2012
Amplitude and frequency modulation in wall turbulence. J. Fluid Mech.
712, 61–91.

George, W. K. & Castillo, L.
1997
Zero pressure gradient turbulent boundary layer. Appl. Mech. Rev.
50, 689–729.

Guala, M., Hommema, S. E. & Adrian, R. J.
2006
Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.
554, 521–542.

Hutchins, N.
2012
Caution: tripping hazards. J. Fluid Mech.
710, 1–4.

Hutchins, N., Ganapathisubramani, B. & Marusic, I.
2004
Dominant spanwise Fourier modes, and the existence of very large scale coherence in turbulent boundary layers. In 15th Australasian Fluid Mechanics Conference, Sydney, Australia, AFMS.

Hutchins, N. & Marusic, I.
2007a
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.

Hutchins, N. & Marusic, I.
2007b
Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A
365, 647–664.

Hutchins, N., Monty, J. P., Hultmark, M. & Smits, A. J.
2015
A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence. Exp. Fluids
56 (1), 1–18.

Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S.
2009
Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech.
635, 101–136.

Inoue, M., Mathis, R., Marusic, I. & Pullin, D. I.
2012
Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids
24 (7), 075102.

Johansson, G. & Castillo, L.
2001
LDA measurements in turbulent boundary layers with zero pressure gradient. In Proc. 2nd Int. Symp. Turbulent Shear Flow Phenomena, Stockholm, Sweden.

Jones, M. B.1998 Evolution and structure of sink flow turbulent boundary layers. PhD thesis, The University of Melbourne, Melbourne, Australia.

Jones, M. B., Marusic, I. & Perry, A. E.
1995
The effect of aspect ratio and divergence on the turbulence structure of boundary layers. In Proceedings of the 12th Australasian Fluid Mech. Conf., Sydney, Australia, pp. 436–439.

Jones, M. B., Marusic, I. & Perry, A. E.
2001
Evolution and structure of sink-flow turbulent boundary layers. J. Fluid Mech.
428, 1–27.

Kim, K. C. & Adrian, R. J.
1999
Very large-scale motion in the outer layer. Phys. Fluids
11, 417–422.

Klebanoff, P. S. & Diehl, Z. W.1951 Some features of artificially thickened fully developed turbulent boundary layers with zero pressure gradient. *Tech. Rep.* 2475. DTIC Document.

Klewicki, J. C.
2010
Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. J. Fluids Engng
132 (9), 094001.

Kulandaivelu, V.2012 Evolution of zero pressure gradient turbulent boundary layers from different initial conditions. PhD thesis, University of Melbourne.

Lee, M. K. & Moser, R. D.
2015
Direct numerical simulation of a turbulent channel flow up to
. J. Fluid Mech.
744, 395–415.

Lewkowicz, A. K.
1982
An improved universal wake function for turbulent boundary layers and some of its consequences. Z. Flugwiss. Weltraumforsch.
6, 261–266.

Ligrani, P. M. & Bradshaw, P.
1987
Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp. Fluids
5, 407–417.

Marusic, I., Mathis, R. & Hutchins, N.
2010a
High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow
31, 418–428.

Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R.
2010b
Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids
22 (6), 065103.

Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J.
2013
On the logarithmic region in wall turbulence. J. Fluid Mech.
716, R3.

Mathis, R., Hutchins, N. & Marusic, I.
2009
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.
628, 311–337.

Meneveau, C. & Marusic, I.
2013
Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech.
719, R1.

Monkewitz, P. A., Chauhan, K. A. & Nagib, H. M.
2007
Self-contained high Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys. Fluids
19, 115101.

Monkewitz, P. A., Chauhan, K. A. & Nagib, H. M.
2008
Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers. Phys. Fluids
20, 105102.

Moses, H. L.1964 The behavior of turbulent boundary layers in adverse pressure gradients. *Tech. Rep.* 73. Gas Turbine Lab. MIT.

Musker, A. J.
1979
Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J.
17 (6), 655–657.

Nagano, Y., Tagawa, M. & Tsuji, T.
1993
Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer. In Turbulent Shear Flows 8, pp. 7–21. Springer.

Nagib, H. M., Chauhan, K. A. & Monkewitz, P. A.
2007
Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. Lond. A
365, 755–770.

Nickels, T. B.
2004
Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech.
521, 217–239.

Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S.
2005
Evidence of the
law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett.
95, 074501.

Österlund, J. M.1999 Experimental studies of zero-pressure gradient turbulent boundary layer flow. PhD thesis, Royal Institute of Technolgy, Stockholm, Sweden.

Palumbo, D.
2013
The variance of convection velocity in the turbulent boundary layer and its effect on coherence length. J. Sound Vib.
332 (15), 3692–3705.

Perry, A. E. & Marusic, I.
1995
A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech.
198, 361–388.

Perry, A. E., Marusic, I. & Jones, M. B.
2002
On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J. Fluid Mech.
461, 61–91.

Perry, A. E., Marusic, I. & Li, J. D.
1994
Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis. Phys. Fluids
6 (2), 1024–1035.

Rosenberg, B. J., Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J.
2013
Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers. J. Fluid Mech.
731, 46–63.

Schlatter, P. & Örlü, R.
2010
Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech.
659, 116–126.

Schlatter, P. & Örlü, R.
2012
Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech.
710, 5–34.

Schlichting, H.
1960
Boundary-layer Theory. McGraw-Hill.

Seo, J., Castillo, L., Johansson, T. G. & Hangan, H.
2004
Reynolds stress in turbulent boundary layers at high Reynolds number. J. Turbul.
5, 1–13.

Smits, A. J., McKeon, B. J. & Marusic, I.
2011
High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech.
43, 353–375.

Talluru, K. M., Kulandaivelu, V., Hutchins, N. & Marusic, I.
2014
A calibration technique to correct sensor drift issues in hot-wire anemometry. Meas. Sci. Technol.
25 (10), 105304.

Vallikivi, M., Ganapathisubramani, B. & Smits, A. J.
2015
Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech.
771, 303–326.