Berg, H. C.
2000
Motile behavior of bacteria. Phys. Today
53 (1), 24–30.
Berke, A. P., Turner, L., Berg, H. C. & Lauga, E.
2008
Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett.
101, 038102.
Blake, J. R.
1971a
Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull. Austral. Math. Soc.
5 (02), 255–264.
Blake, J. R.
1971b
A spherical envelope approach to ciliary propulsion. J. Fluid Mech.
46 (1), 199–208.
Blake, J. R. & Chwang, A. T.
1974
Fundamental singularities of viscous flow. J. Engng Maths
8 (1), 23–29.
Brenner, H.
1961
The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci.
16 (3), 242–251.
Brenner, H.
1964
Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length. Appl. Sci. Res.
13 (1), 81–120.
Brumley, D. R., Wan, K. Y., Polin, M. & Goldstein, R. E.
2014
Flagellar synchronization through direct hydrodynamic interactions. eLife
3, e02750.
Cates, M. E., Marenduzzo, D., Pagonabarraga, I. & Tailleur, J.
2010
Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proc. Natl Acad. Sci. USA
107 (26), 11715–11720.
Cisneros, L. H., Kessler, J. O., Ganguly, S. & Goldstein, R. E.
2011
Dynamics of swimming bacteria: transition to directional order at high concentration. Phys. Rev. E
83 (6), 061907.
Contino, M., Lushi, E., Tuval, I., Kantsler, V. & Polin, M.
2015
Microalgae scatter off solid surfaces by hydrodynamic and contact forces. Phys. Rev. Lett.
115 (25), 258102.
Cox, R. G. & Brenner, H.
1967
The slow motion of a sphere through a viscous fluid towards a plane surface – II. Small gap widths, including inertial effects. Chem. Engng Sci.
22 (12), 1753–1777.
Crowdy, D. G.
2011
Treadmilling swimmers near a no-slip wall at low Reynolds number. Intl J. Non-linear Mech.
46 (4), 577–585.
Crowdy, D. G.
2013
Wall effects on self-diffusiophoretic Janus particles: a theoretical study. J. Fluid Mech.
735, 473–498.
Crowdy, D. G., Lee, S., Samson, O., Lauga, E. & Hosoi, A. E.
2011
A two-dimensional model of low-Reynolds number swimming beneath a free surface. J. Fluid Mech.
681, 24–47.
Davis, A. M. J. & Crowdy, D. G.
2015
Matched asymptotics for a spherical low-Reynolds-number treadmilling swimmer near a rigid wall. IMA J. Appl. Maths
80 (3), 634–650.
Dean, W. R. & O’Neill, M. E.
1963
A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika
10 (01), 13–24.
Denissenko, P., Kantsler, V., Smith, D. J. & Kirkman-Brown, J.
2012
Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc. Natl Acad. Sci. USA
109 (21), 8007–8010.
Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M. P., Mecarini, F., De Angelis, F. & Di Fabrizio, E.
2010
Bacterial ratchet motors. Proc. Natl Acad. Sci. USA
107 (21), 9541–9545.
Di Leonardo, R., Dell’Arciprete, D., Angelani, L. & Iebba, V.
2011
Swimming with an image. Phys. Rev. Lett.
106 (3), 038101.
DiLuzio, W. R., Turner, L., Mayer, M., Garstecki, P., Weibel, D. B., Berg, H. C. & Whitesides, G. M.
2005
Escherichia coli swim on the right-hand side. Nature
435 (7046), 1271–1274.
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O.
2004
Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett.
93 (9), 098103.
Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E.
2011
Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA
108 (27), 10940–10945.
Drescher, K., Goldstein, R. E., Michel, N., Polin, M. & Tuval, I.
2010
Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett.
105, 168101.
Drescher, K., Leptos, K. C., Tuval, I., Ishikawa, T., Pedley, T. J. & Goldstein, R. E.
2009
Dancing Volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett.
102 (16), 168101.
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. & Bibette, J.
2005
Microscopic artificial swimmers. Nature
437 (7060), 862–865.
Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H. H., Bär, M. & Goldstein, R. E.
2013
Fluid dynamics of bacterial turbulence. Phys. Rev. Lett.
110 (22), 228102.
Ehlers, K. M., Samuel, A. D., Berg, H. C. & Montgomery, R.
1996
Do cyanobacteria swim using traveling surface waves?
Proc. Natl Acad. Sci. USA
93 (16), 8340–8343.
Frymier, P. D., Ford, R. M., Berg, H. C. & Cummings, P. T.
1995
Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl Acad. Sci. USA
92 (13), 6195–6199.
Goldman, A. J., Cox, R. G. & Brenner, H.
1966
The slow motion of two identical arbitrarily oriented spheres through a viscous fluid. Chem. Engng Sci.
21, 1151–1170.
Goldman, A. J., Cox, R. G. & Brenner, H.
1967a
Slow viscous motion of a sphere parallel to a plane wall – I. Motion through a quiescent fluid. Chem. Engng Sci.
22 (4), 637–651.
Goldman, A. J., Cox, R. G. & Brenner, H.
1967b
Slow viscous motion of a sphere parallel to a plane wall – II. Couette flow. Chem. Engng Sci.
22 (4), 653–660.
Golestanian, R., Liverpool, T. B. & Adjari, A.
2005
Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett.
94, 220801.
Golestanian, R., Liverpool, T. B. & Adjari, A.
2007
Designing phoretic micro-and nano-swimmers. New J. Phys.
9, 126.
Happel, J. & Brenner, H.
1983
Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Happel, J. & Pfeffer, R.
1960
The motion of two spheres following each other in a viscous fluid. AIChE J.
6, 129–133.
Higdon, J. J. L.
1979
The generation of feeding currents by flagellar motions. J. Fluid Mech.
94 (02), 305–330.
Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R.
2007
Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett.
99 (4), 048102.
Ishikawa, T., Simmonds, M. P. & Pedley, T. J.
2006
Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech.
568, 119–160.
Jeffery, G. B.
1912
On a form of the solution of Laplace’s equation suitable for problems relating to two spheres. Proc. R. Soc. Lond. A
109–120.
Jeffery, G. B.
1915
On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc.
2 (1), 327–338.
Jeffery, G. B.
1922
The rotation of two circular cylinders in a viscous fluid. Proc. R. Soc. Lond. A
101 (709), 169–174.
Jeffrey, D. J. & Onishi, Y.
1981
The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Maths
34 (2), 129–137.
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E.
2013
Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA
110 (4), 1187–1192.
Kanwal, R. P.
1961
Slow steady rotation of axially symmetric bodies in a viscous fluid. J. Fluid Mech.
10 (01), 17–24.
Kim, S. & Karrila, S. J.
2013
Microhydrodynamics: Principles and Selected Applications. Courier Corporation.
Koumakis, N., Lepore, A., Maggi, C. & Di Leonardo, R.
2013
Targeted delivery of colloids by swimming bacteria. Nat. Commun.
4, 2588.
Lauga, E.
2014
Locomotion in complex fluids: integral theorems. Phys. Fluids
26 (8), 081902.
Lauga, E., Diluzio, W. R., Whitesides, G. M. & Stone, H. A.
2006
Swimming in circles: motion of bacteria near solid boundaries. Biophys. J.
90 (2), 400–412.
Lauga, E. & Powers, T. R.
2009
The hydrodynamics of swimming microorganisms. Rep. Prog. Phys.
72 (9), 096601.
Leshansky, A. M. & Kenneth, O.
2008
Surface tank treading: propulsion of Purcell’s toroidal swimmer. Phys. Fluids
20 (6), 063104.
Leshansky, A. M., Kenneth, O., Gat, O. & Avron, J. E.
2007
A frictionless microswimmer. New J. Phys.
9 (5), 145.
Li, G. & Tang, J. X.
2009
Accumulation of microswimmers near a surface mediated by collision and rotational brownian motion. Phys. Rev. Lett.
103 (7), 078101.
Lighthill, M. J.
1952
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths
5 (1052), 109–118.
Liron, N. & Mochon, S.
1976
Stokes flow for a Stokeslet between two parallel flat plates. J. Engng Maths
10 (4), 287–303.
Liron, N. & Shahar, R.
1978
Stokes flow due to a Stokeslet in a pipe. J. Fluid Mech.
86 (04), 727–744.
Lopez, D. & Lauga, E.
2014
Dynamics of swimming bacteria at complex interfaces. Phys. Fluids
26 (7), 071902.
Magariyama, Y., Ichiba, M., Nakata, K., Baba, K., Ohtani, T., Kudo, S. & Goto, T.
2005
Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys. J
88 (5), 3648–3658.
Magariyama, Y., Sugiyama, S. & Kudo, S.
2001
Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol. Lett.
199 (1), 125–129.
Majumdar, S. R. & O’Neill, M. E.
1977
On axisymmetric Stokes flow past a torus. Z. Angew. Math. Phys.
28 (4), 541–550.
Maleček, K. & Nádeník, Z.
2001
On the inductive proof of Legendre addition theorem. Stud. Geophys. Geod.
45 (1), 1–11.
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A.
2013
Hydrodynamics of soft active matter. Rev. Mod. Phys.
85 (3), 1143–1189.
Masoud, H. & Stone, H. A.
2014
A reciprocal theorem for Marangoni propulsion. J. Fluid Mech.
741, R4.
Michelin, S. & Lauga, E.
2015a
Autophoretic locomotion from geometric asymmetry. Eur. Phys. J. E
38 (2), 1–16.
Michelin, S. & Lauga, E.
2015b
A reciprocal theorem for boundary-driven channel flows. Phys. Fluids
27 (11), 111701.
Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C.
2016
Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids
28 (5), 053107.
O’Neill, M. E.
1964
A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika
11 (01), 67–74.
O’Neill, M. E. & Majumdar, R.
1970a
Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part I. The determination of exact solutions for any values of the ratio of radii and separation parameters. Z. Angew. Math. Phys.
21 (2), 164–179.
O’Neill, M. E. & Majumdar, S. R.
1970b
Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part II. Asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero. Z. Angew. Math. Phys.
21 (2), 180–187.
O’Neill, M. E. & Ranger, K. B.
1979
On the rotation of a rotlet or sphere in the presence of an interface. Intl J. Multiphase Flow
5 (2), 143–148.
O’Neill, M. E. & Stewartson, K.
1967
On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech.
27 (04), 705–724.
O’Toole, G., Kaplan, H. B. & Kolter, R.
2000
Biofilm formation as microbial development. Ann. Rev. Microbiol.
54 (1), 49–79.
Pak, O. S. & Lauga, E.
2014
Generalized squirming motion of a sphere. J. Engng Maths
88 (1), 1–28.
Papavassiliou, D. & Alexander, G. P.
2015
The many-body reciprocal theorem and swimmer hydrodynamics. Europhys. Lett.
110 (4), 44001.
Paxton, W. F., Sen, A. & Mallouk, T. E.
2005
Motility of catalytic nanoparticles through self-generated forces. Chem. Eur. J.
11 (22), 6462–6470.
Payne, L. E. & Pell, W. H.
1960
The Stokes flow problem for a class of axially symmetric bodies. J. Fluid Mech.
7 (04), 529–549.
Pedley, T. J. & Kessler, J. O.
1992
Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech.
24, 313–358.
Popescu, M. N., Tasinkevych, M. & Dietrich, S.
2011
Pulling and pushing a cargo with a catalytically active carrier. Europhys. Lett.
95 (2), 28004.
Pozrikidis, C.
1992
Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Purcell, E. M.
1977
Life at low Reynolds number. Am. J. Phys.
45 (1), 3–11.
Pushkin, D. O., Shum, H. & Yeomans, J. M.
2013
Fluid transport by individual microswimmers. J. Fluid Mech.
726, 5–25.
Ramaswamy, S.
2010
The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys.
1, 323–345.
Rothschild, L.
1963
Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature
198 (488), 1221–1222.
Rückner, G. & Kapral, R.
2007
Chemically powered nanodimers. Phys. Rev. Lett.
98 (15), 150603.
Sharifi-Mood, N., Mozaffari, A. & Córdova-Figueroa, U. M.
2016
Pair interaction of catalytically active colloids: from assembly to escape. J. Fluid Mech.
798, 910–954.
Sneddon, I. N.
1956
Special Functions of Mathematical Physics and Chemistry. Oliver and Boyd.
Spagnolie, S. E. & Lauga, E.
2012
Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech.
700, 105–147.
Squires, T. M. & Bazant, M. Z.
2004
Induced-charge electro-osmosis. J. Fluid Mech.
509, 217–252.
Stimson, M. & Jeffery, G. B.
1926
The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A
111, 110–116.
Stone, H. A. & Samuel, A. D. T.
1996
Propulsion of microorganisms by surface distortions. Phys. Rev. Lett.
77 (19), 4102–4104.
Takagi, D., Palacci, J., Braunschweig, A. B., Shelley, M. J. & Zhang, J.
2014
Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matt.
10, 1784–1789.
Taylor, G. I.
1951
Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A
209 (1099), 447–461.
Taylor, G. I.
1952
The action of waving cylindrical tails in propelling microscopic organisms. Proc. R. Soc. Lond. A
225–239.
Valadares, L. F., Tao, Y.-G., Zacharia, N. S., Kitaev, V., Galembeck, F., Kapral, R. & Ozin, G. A.
2010
Catalytic nanomotors: self-propelled sphere dimers. Small
6 (4), 565–572.
Weibel, D. B., Garstecki, P., Ryan, D., Diluzio, W. R., Mayer, M., Seto, J. E. & Whitesides, G. M.
2005
Microoxen: microorganisms to move microscale loads. Proc. Natl Acad. Sci. USA
102 (34), 11963–11967.
Whittaker, E. T. & Watson, G. N.
1996
A Course of Modern Analysis. Cambridge University Press.
Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O. & Goldstein, R. E.
2013
Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett.
110 (26), 268102.
Wu, X.-L. & Libchaber, A.
2000
Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett.
84 (13), 3017–3020.
Zargar, R., Najafi, A. & Miri, M.
2009
Three-sphere low-Reynolds-number swimmer near a wall. Phys. Rev. E
80 (2), 026308.