Skip to main content

Expanding the QR space to three dimensions

  • BEAT LÜTHI (a1) (a2), MARKUS HOLZNER (a1) (a2) and ARKADY TSINOBER (a1) (a3)

The two-dimensional space spanned by the velocity gradient invariants Q and R is expanded to three dimensions by the decomposition of R into its strain production −1/3sijsjkski and enstrophy production 1/4ωiωjsij terms. The {Q; R} space is a planar projection of the new three-dimensional representation. In the {Q; −sss; ωωs} space the Lagrangian evolution of the velocity gradient tensor Aij is studied via conditional mean trajectories (CMTs) as introduced by Martín et al. (Phys. Fluids, vol. 10, 1998, p. 2012). From an analysis of a numerical data set for isotropic turbulence of Reλ ~ 434, taken from the Johns Hopkins University (JHU) turbulence database, we observe a pronounced cyclic evolution that is almost perpendicular to the QR plane. The relatively weak cyclic evolution in the QR space is thus only a projection of a much stronger cycle in the {Q; −sss; ωωs} space. Further, we find that the restricted Euler (RE) dynamics are primarily counteracted by the deviatoric non-local part of the pressure Hessian and not by the viscous term. The contribution of the Laplacian of Aij, on the other hand, seems the main responsible for intermittently alternating between low and high intensity Aij states.

Corresponding author
Email address for correspondence:
Hide All
Ashurst, W., Kerstein, A. & Kerr, R. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8) 23432353.
Biferale, L., Chevillard, L., Meneveau, C. & Toschi, F. 2007 Multiscale model of gradient evolution in turbulent flows. Phys. Rev. Lett. 98 214501.
Cantwell, B. 1992 Exact solution of a restricted euler equation for the velocity-gradient tensor. Phys. Fluids 4 (4) 782793.
Cao, N. & Chen, S. 1999 Statistics and structures of pressure in isotropic turbulence. Phys. Fluids 14 25382541.
Chacín, J. M. & Cantwell, B. J. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404 87115.
Chertkov, M., Pumir, A. & Shraiman, B. I. 1999 Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11 (8) 23942410.
Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F. 2008 Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20 101504.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Galanti, B. & Tsinober, A. 2000 Self-amplification of the field of velocity derivatives in quasi-isotropic turbulence. Phys. Fluids 12 (12) 30973099.
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part I. Facilities, methods and some general results. J. Fluid Mech. 589 5781.
Jeong, E. & Girimaji, S. S. 2003 Velocity-gradient dynamics in turbulence: effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16 421432.
Kholmyansky, M., Tsinober, A. & Yorish, S. 2001 Velocity derivatives in the atmospheric surface layer at Re-lambda=104. Phys. Fluids 13 (1) 311314.
Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9 (31) 129.
Lund, T. S. & Rogers, M. M. 1994 An improved measure of strain state probability in turbulent flows. Phys. Fluids 6 (5) 18381847.
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528 87118.
Martín, J., Dopazo, C. & Valiño, L. 1998 Dynamics of velocity gradient invariants in turbulence: restricted Euler and linear diffusion models. Phys. Fluids 10 (8) 20122025.
Ooi, A., Martín, J., Soria, J. & Chong, M. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381 141174.
Patterson, G. & Orszag, S. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14 2538–2514.
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2) 871884.
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 435472.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Tsinober, A. 2001 An Informal Introduction to Turbulence. Kluwer Academic.
Tsinober, A., Ortenberg, M. & Shtilman, L. 1999 On depression of nonlinearity in turbulence. Phys. Fluids 11 22912297.
Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. Le journal de Physique 43 (6) 837842.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *