Skip to main content
×
×
Home

Experimental and numerical study of wall layer development in a tribocharged fluidized bed

  • Petteri Sippola (a1), Jari Kolehmainen (a2), Ali Ozel (a3), Xiaoyu Liu (a2), Pentti Saarenrinne (a1) and Sankaran Sundaresan (a2)...
Abstract

The effects of triboelectricity in a small-scale fluidized bed of polyethylene particles were investigated by imaging the particle layer in the vicinity of the column wall and by measuring the pressure drop across the bed. The average charge on the particles was altered by changing the relative humidity of the gas. A triboelectric charging model coupled with a computational fluid dynamics–discrete element method (CFD-DEM) model was utilized to simulate gas–particle flow in the bed. The electrostatic forces were evaluated based on a particle–particle particle–mesh method, accounting for the surface charge on the insulating walls. It was found that simulations with fixed and uniform charge distribution among the particles capture remarkably well both the agglomeration of the particles on the wall and the associated decrease in the pressure drop across the bed. With a dynamic tribocharging model, the charging rate had to be accelerated to render the computations affordable. Such simulations with an artificial acceleration significantly over-predict charge segregation and the wall becomes rapidly sheeted with a single layer of strongly charged particles.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Experimental and numerical study of wall layer development in a tribocharged fluidized bed
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Experimental and numerical study of wall layer development in a tribocharged fluidized bed
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Experimental and numerical study of wall layer development in a tribocharged fluidized bed
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: psippola@gmail.com
References
Hide All
Antypov, D. & Elliott, J. A. 2011 On an analytical solution for the damped Hertzian spring. Europhys. Lett. 94 (5), 50004.
Carter, D. & Hartzell, C. 2017 Extension of discrete tribocharging models to continuous size distributions. Phys. Rev. E 95 (1), 012901.
Cartwright, P., Singh, S., Bailey, A. G. & Rose, L. J. 1985 Electrostatic charging characteristics of polyethylene powder during pneumatic conveying. IEEE Trans. Ind. Applics. (2), 541546.
Castle, G. S. P. 1997 Contact charging between insulators. J. Electrostat. 40 (Supplement C), 1320.
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Gèotechnique 29 (1), 4765.
Duff, N. & Lacks, D. J. 2008 Particle dynamics simulations of triboelectric charging in granular insulator systems. J. Electrostat. 66 (1–2), 5157.
Feynman, R. P., Leighton, R. & Sands, M. 1966 The Feynman Lectures on Physics, Vol. 2: Mainly Electromagnetism and Matter. Addison-Wesley.
Forward, K. M., Lacks, D. J. & Sankaran, R. M. 2008 Triboelectric charging of granular insulator mixtures due solely to particle–particle interactions. Ind. Engng Chem. Res. 48 (5), 23092314.
Fotovat, F., Alsmari, T. A., Grace, J. R. & Bi, X. T. 2017a The relationship between fluidized bed electrostatics and entrainment. Powder Technol. 316, 157165.
Fotovat, F., Bi, X. T. & Grace, J. R. 2017b Electrostatics in gas–solid fluidized beds: a review. Chem. Engng Sci. 173, 303334.
Fotovat, F., Grace, J. R. & Bi, X. T. 2017c Particle entrainment from gas–solid fluidized beds: conductive versus dielectric fines. AIChE J. 63 (4), 11941202.
Gear, C. W. & Kevrekidis, I. G. 2003 Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24 (4), 10911106.
Grosshans, H. & Papalexandris, M. V. 2016a Evaluation of the parameters influencing electrostatic charging of powder in a pipe flow. J. Loss Prev. Process. Ind. 43 (Supplement C), 8391.
Grosshans, H. & Papalexandris, M. V. 2016b Large eddy simulation of triboelectric charging in pneumatic powder transport. Powder Technol. 301 (Supplement C), 10081015.
Gu, Z., Wei, W., Su, J. & Yu, C. W. 2013 The role of water content in triboelectric charging of wind-blown sand. Sci. Rep. 3, 1337.
Harper, W. R. 1967 Contact and Frictional Electrification. Clarendon Press.
Hendrickson, G. 2006 Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem. Engng Sci. 61 (4), 10411064.
Jackson, J. D. 1999 Classical Electrodynamics, 3rd edn. Wiley.
Jalalinejad, F., Bi, X. T. & Grace, J. R. 2012 Effect of electrostatic charges on single bubble in gas–solid fluidized beds. Intl J. Multiphase Flow 44, 1528.
Jalalinejad, F., Bi, X. T. & Grace, J. R. 2016 Comparison of theory with experiment for single bubbles in charged fluidized particles. Powder Technol. 290, 2732.
Jasak, H., Jemcov, A. & Tukovic, Z. 2007 Openfoam: A C + + library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, pp. 120. IUC Dubrovnik.
Karner, S., Maier, M., Littringer, E. & Urbanetz, N. A. 2014 Surface roughness effects on the tribo-charging and mixing homogeneity of adhesive mixtures used in dry powder inhalers. Powder Technol. 264 (Supplement C), 544549.
Knorr, N. 2011 Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale. AIP Adv. 1 (2), 022119.
Kok, J. F. & Lacks, D. J. 2009 Electrification of granular systems of identical insulators. Phys. Rev. E 79 (5), 051304.
Kolehmainen, J., Ozel, A., Boyce, C. & Sundaresan, S. 2017a Triboelectric charging of monodisperse particles in fluidized beds. AIChE J. 63 (6), 18721891.
Kolehmainen, J., Ozel, A. & Sundaresan, S. 2016 A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J. 62 (7), 22822295.
Kolehmainen, J., Sippola, P., Raitanen, O., Ozel, A., Boyce, C. M., Saarenrinne, P. & Sundaresan, S. 2017b Effect of humidity on triboelectric charging in a vertically vibrated granular bed: experiments and modeling. Chem. Engng Sci. 173, 363373.
Korevaar, M. W., Padding, J. T., Van Der Hoef, M. A. & Kuipers, J. A. M. 2014 Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders. Powder Technol. 258, 144156.
Lacks, D. J. & Sankaran, R. M. 2011 Contact electrification of insulating materials. J. Phys. D: Appl. Phys. 44 (45), 453001.
LaMarche, K. R., Muzzio, F. J., Shinbrot, T. & Glasser, B. J. 2010 Granular flow and dielectrophoresis: the effect of electrostatic forces on adhesion and flow of dielectric granular materials. Powder Technol. 199 (2), 180188.
Laurentie, J. C., Traoré, P. & Dascalescu, L. 2013 Discrete element modeling of triboelectric charging of insulating materials in vibrated granular beds. J. Electrostat. 71 (6), 951957.
Laurentie, J.-C., Traore, P., Dragan, C. & Dascalescu, L. 2010 Numerical modeling of triboelectric charging of granular materials in vibrated beds. In Industry Applications Society Annual Meeting (IAS), 2010 IEEE, pp. 16. IEEE.
Lee, L.-H. 1994 Dual mechanism for metal-polymer contact electrification. J. Electrostat. 32 (1), 129.
Lee, V., Waitukaitis, S. R., Miskin, M. Z. & Jaeger, H. M. 2015 Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys. 11, 733737.
Liao, C.-C., Hsiau, S.-S. & Huang, T.-Y. 2011 The effect of vibrating conditions on the electrostatic charge in a vertical vibrating granular bed. Powder Technol. 208 (1), 16.
Liu, G., Marshall, J. S., Li, S. Q. & Yao, Q. 2010 Discrete-element method for particle capture by a body in an electrostatic field. Intl J. Numer. Meth. Engng 84 (13), 15891612.
Lowell, J. & Rose-Innes, A. C. 1980 Contact electrification. Adv. Phys. 29 (6), 9471023.
Matsusaka, S., Maruyama, H., Matsuyama, T. & Ghadiri, M. 2010 Triboelectric charging of powders: a review. Chem. Engng Sci. 65 (22), 57815807.
Matsuyama, T. & Yamamoto, H. 1995 Characterizing the electrostatic charging of polymer particles by impact charging experiments. Adv. Powder Technol. 6 (3), 211220.
McCarty, L. S. & Whitesides, G. M. 2008 Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Intl Ed. Engl. 47 (12), 21882207.
Mehrani, P., Bi, H. T. & Grace, J. R. 2005 Electrostatic charge generation in gas–solid fluidized beds. J. Electrostat. 63 (2), 165173.
Mehrani, P., Bi, H. T. & Grace, J. R. 2007 Electrostatic behavior of different fines added to a Faraday cup fluidized bed. J. Electrostat. 65 (1), 110.
Mizutani, M., Yasuda, M. & Matsusaka, S. 2015 Advanced characterization of particles triboelectrically charged by a two-stage system with vibrations and external electric fields. Adv. Powder Technol. 26 (2), 454461.
Naik, S., Sarkar, S., Gupta, V., Hancock, B. C., Abramov, Y., Yu, W. & Chaudhuri, B. 2015 A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly. Intl J. Pharmaceut. 491 (1), 5868.
Naik, S., Sarkar, S., Hancock, B., Rowland, M., Abramov, Y., Yu, W. & Chaudhuri, B. 2016 An experimental and numerical modeling study of tribocharging in pharmaceutical granular mixtures. Powder Technol. 297, 211219.
Pähtz, T., Herrmann, H. J. & Shinbrot, T. 2010 Why do particle clouds generate electric charges? Nat. Phys. 6 (5), 364368.
Pei, C., Wu, C.-Y. & Adams, M. 2016 DEM-CFD analysis of contact electrification and electrostatic interactions during fluidization. Powder Technol. 304, 208217.
Radl, S. & Sundaresan, S. 2014 A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions. Chem. Engng Sci. 117, 416425.
Rokkam, R. G., Sowinski, A., Fox, R. O., Mehrani, P. & Muhle, M. E. 2013 Computational and experimental study of electrostatics in gas–solid polymerization fluidized beds. Chem. Engng Sci. 92, 146156.
Rowe, P. N. 1961 Drag forces in a hydraulic model of a fluidized bed – part ii. Trans. Inst. Chem. Engrs 39, 175180.
Salama, F., Sowinski, A., Atieh, K. & Mehrani, P. 2013 Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas–solid fluidized bed. J. Electrostat. 71 (1), 2127.
Schella, A., Herminghaus, S. & Schroter, M. 2017 Influence of humidity on tribo-electric charging and segregation in shaken granular media. Soft Matt. 13, 394401.
Schiller, L. & Naumann, A. 1933 Uber die grundlegenden berechnungen bei der schwekraftaubereitung. Z. Verein. Deutsch. Ing. 77 (12), 318320.
Siu, T., Cotton, J., Mattson, G. & Shinbrot, T. 2014 Self-sustaining charging of identical colliding particles. Phys. Rev. E 89 (5), 052208.
Siu, T., Pittman, W., Cotton, J. & Shinbrot, T. 2015 Nonlinear granular electrostatics. Granul. Matt. 17 (2), 165175.
Snider, D. M. 2001 An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J. Comput. Phys. 170 (2), 523549.
Song, D. & Mehrani, P. 2017 Mechanism of particle build-up on gas–solid fluidization column wall due to electrostatic charge generation. Powder Technol. 316 (Supplement C), 166170.
Sowinski, A., Mayne, A. & Mehrani, P. 2012 Effect of fluidizing particle size on electrostatic charge generation and reactor wall fouling in gas–solid fluidized beds. Chem. Engng Sci. 71, 552563.
Tanoue, K.-I., Tanaka, H., Kitano, H. & Masuda, H. 2001 Numerical simulation of tribo-electrification of particles in a gas–solids two-phase flow. Powder Technol. 118 (1), 121129.
Thielicke, W. & Stamhuis, E. J. 2014 Pivlab – towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J. Open Res. Software 2 (1), e30.
Toukmaji, A. Y. & Board, J. A. Jr. 1996 Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 7392.
Wen, C. Y. & Yu, Y. H. 1966 Mechanics of fluidization. Chem. Engr. Prog. Sump. Series 62, 100.
Westerweel, J., Dabiri, D. & Gharib, M. 1997 The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp. Fluids 23 (1), 2028.
Yang, Y., Zi, C., Huang, Z., Wang, J., Lungu, M., Liao, Z., Yang, Y. & Su, H. 2017 CFD-DEM investigation of particle elutriation with electrostatic effects in gas–solid fluidized beds. Powder Technol. 308, 422433.
Yoshimatsu, R., Araujo, N. A. M., Shinbrot, T. & Herrmann, H. J. 2016 Field driven charging dynamics of a fluidized granular bed. Soft Matt. 12, 62616267.
Yoshimatsu, R., Araújo, N. A. M., Wurm, G., Herrmann, H. J. & Shinbrot, T. 2017 Self-charging of identical grains in the absence of an external field. Sci. Rep. 7, 39996.
Zhou, Z. Y., Kuang, S. B., Chu, K. W. & Yu, A. B. 2010 Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J. Fluid Mech. 661, 482510.
Zhou, Y. S., Wang, S., Yang, Y., Zhu, G., Niu, S., Lin, Z.-H., Liu, Y. & Wang, Z. L. 2014 Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 14 (3), 15671572.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 8
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 70 *
Loading metrics...

* Views captured on Cambridge Core between 26th June 2018 - 17th July 2018. This data will be updated every 24 hours.