Skip to main content
×
×
Home

Experimental control of swept-wing transition through base-flow modification by plasma actuators

  • Srikar Yadala (a1) (a2), Marc T. Hehner (a1) (a3), Jacopo Serpieri (a1), Nicolas Benard (a2), Philipp C. Dörr (a3), Markus J. Kloker (a3) and Marios Kotsonis (a1)...
Abstract

Control of laminar-to-turbulent transition on a swept-wing is achieved by base-flow modification in an experimental framework, up to a chord Reynolds number of 2.5 million. This technique is based on the control strategy used in the numerical simulation by Dörr & Kloker (J. Phys. D: Appl. Phys., vol. 48, 2015b, 285205). A spanwise uniform body force is introduced using dielectric barrier discharge plasma actuators, to either force against or along the local cross-flow component of the boundary layer. The effect of forcing on the stability of the boundary layer is analysed using a simplified model proposed by Serpieri et al. (J. Fluid Mech., vol. 833, 2017, pp. 164–205). A minimal thickness plasma actuator is fabricated using spray-on techniques and positioned near the leading edge of the swept-wing, while infrared thermography is used to detect and quantify transition location. Results from both the simplified model and experiment indicate that forcing along the local cross-flow component promotes transition while forcing against successfully delays transition. This is the first experimental demonstration of swept-wing transition delay via base-flow modification using plasma actuators.

Copyright
Corresponding author
Email address for correspondence: s.yadalavenkata@tudelft.nl
References
Hide All
Benard, N. & Moreau, E. 2014 Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55 (11), 143.
Benard, N., Noté, P. & Moreau, E. 2017 Highly time-resolved investigation of the electric wind caused by surface DBD at various ac frequencies. J. Electrostat. 88, 4148.
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.
Dörr, P. C. & Kloker, M. J. 2015a Numerical investigation of plasma-actuator force-term estimations from flow experiments. J. Phys. D 48 (39), 395203.
Dörr, P. C. & Kloker, M. J. 2015b Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators. J. Phys. D: Appl. Phys. 48, 285205.
Dörr, P. C. & Kloker, M. J. 2016 Transition control in a three-dimensional boundary layer by direct attenuation of nonlinear crossflow vortices using plasma actuators. Intl J. Heat Fluid Flow 449465.
Downs, R. S. III & White, E. B. 2013 Free-stream turbulence and the development of cross-flow disturbances. J. Fluid Mech. 735, 347380.
Joslin, R. D. 1998 Aircraft laminar flow control. Annu. Rev. Fluid Mech. 30 (1), 129.
Kotsonis, M., Ghaemi, S., Veldhuis, L. & Scarano, F. 2011 Measurement of the body force field of plasma actuators. J. Phys. D: Appl. Phys. 44 (4), 045204.
Lovig, E. N., Downs, R. S. & White, E. B. 2014 Passive laminar flow control at low turbulence levels. AIAA J. 52 (5), 10721075.
Maden, I., Maduta, R., Kriegseis, J., Jakirli, S., Schwarz, C., Grundmann, S. & Tropea, C. 2013 Experimental and computational study of the flow induced by a plasma actuator. Intl J. Heat Fluid Flow 41, 8089.
Messing, R. & Kloker, M. J. 2010 Investigation of suction for laminar flow control of three-dimensional boundary layers. J. Fluid Mech. 658, 117147.
Saeed, T. I., Mughal, M. S. & Morrison, J. F. 2016 The interaction of a swept-wing boundary layer with surface excrescences. In AIAA Paper 2016-2065.
Saric, W. S., Carpenter, A. L. & Reed, H. L. 2011 Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements. Phil. Trans. R. Soc. Lond. A 369 (1940), 13521364.
Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35 (1), 413440.
Saric, W. S., West, D. E., Tufts, M. W. & Reed, H. L. 2015 Flight test experiments on discrete roughness element technology for laminar flow control. In AIAA Paper 2015-0539.
Schuele, C. Y., Corke, T. C. & Matlis, E. 2013 Control of stationary cross-flow modes in a mach 3.5 boundary layer using patterned passive and active roughness. J. Fluid Mech. 718, 538.
Serpieri, J. & Kotsonis, M. 2016 Three-dimensional organisation of primary and secondary crossflow instability. J. Fluid Mech. 799, 200245.
Serpieri, J., Yadala Venkata, S. & Kotsonis, M. 2017 Conditioning of cross-flow instability modes using dielectric barrier discharge plasma actuators. J. Fluid Mech. 833, 164205.
Shahriari, N.2016 On stability and receptivity of boundary-layer flows. PhD thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
Wang, J. J., Choi, K. S., Feng, L. H., Jukes, T. N. & Whalley, R. D. 2013 Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 62, 5278.
Wang, Z., Wang, L. & Fu, S. 2017 Control of stationary crossflow modes in swept Hiemenz flows with dielectric barrier discharge plasma actuators. Phys. Fluids 29 (9), 094105.
Wassermann, P. & Kloker, M. J. 2002 Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed