Skip to main content
×
×
Home

Experimental investigation of heat transport in homogeneous bubbly flow

  • Biljana Gvozdić (a1), Elise Alméras (a1) (a2), Varghese Mathai (a1), Xiaojue Zhu (a1), Dennis P. M. van Gils (a1), Roberto Verzicco (a1) (a3), Sander G. Huisman (a1), Chao Sun (a1) (a4) and Detlef Lohse (a1)...
Abstract

We present results on the global and local characterisation of heat transport in homogeneous bubbly flow. Experimental measurements were performed with and without the injection of ${\sim}2.5~\text{mm}$ diameter bubbles (corresponding to bubble Reynolds number $Re_{b}\approx 600$ ) in a rectangular water column heated from one side and cooled from the other. The gas volume fraction  $\unicode[STIX]{x1D6FC}$ was varied in the range 0 %–5 %, and the Rayleigh number $Ra_{H}$ in the range $4.0\times 10^{9}{-}1.2\times 10^{11}$ . We find that the global heat transfer is enhanced up to 20 times due to bubble injection. Interestingly, for bubbly flow, for our lowest concentration $\unicode[STIX]{x1D6FC}=0.5\,\%$ onwards, the Nusselt number $\overline{Nu}$ is nearly independent of $Ra_{H}$ , and depends solely on the gas volume fraction  $\unicode[STIX]{x1D6FC}$ . We observe the scaling $\overline{Nu}\,\propto \,\unicode[STIX]{x1D6FC}^{0.45}$ , which is suggestive of a diffusive transport mechanism, as found by Alméras et al. (J. Fluid Mech., vol. 776, 2015, pp. 458–474). Through local temperature measurements, we show that the bubbles induce a huge increase in the strength of liquid temperature fluctuations, e.g. by a factor of 200 for $\unicode[STIX]{x1D6FC}=0.9\,\%$ . Further, we compare the power spectra of the temperature fluctuations for the single- and two-phase cases. In the single-phase cases, most of the spectral power of the temperature fluctuations is concentrated in the large-scale rolls/motions. However, with the injection of bubbles, we observe intense fluctuations over a wide range of scales, extending up to very high frequencies. Thus, while in the single-phase flow the thermal boundary layers control the heat transport, once the bubbles are injected, the bubble-induced liquid agitation governs the process from a very small bubble concentration onwards. Our findings demonstrate that the mixing induced by high Reynolds number bubbles ( $Re_{b}\approx 600$ ) offers a powerful mechanism for heat transport enhancement in natural convection systems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Experimental investigation of heat transport in homogeneous bubbly flow
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Experimental investigation of heat transport in homogeneous bubbly flow
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Experimental investigation of heat transport in homogeneous bubbly flow
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: chaosun@tsinghua.edu.cn
References
Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.
Alméras, E.2014 Étude des propriétés de transport et de mélange dans les écoulements à bulles. PhD thesis, Université de Toulouse.
Alméras, E., Mathai, V., Lohse, D. & Sun, C. 2017 Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech. 825, 10911112.
Alméras, E., Risso, F., Roig, V., Cazin, S., Plais, C. & Augier, F. 2015 Mixing by bubble-induced turbulence. J. Fluid Mech. 776, 458474.
Bejan, A. 2004 Convection Heat Transfer. Wiley.
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50 (1), 269.
Bouche, E., Cazin, S., Roig, V. & Risso, F. 2013 Mixing in a swarm of bubbles rising in a confined cell measured by mean of PLIF with two different dyes. Exp. Fluids 54 (6), 1552.
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.
Chong, K. L., Huang, S., Kaczorowski, M. & Xia, K.-Q. 2015 Condensation of coherent structures in turbulent flows. Phys. Rev. Lett. 115 (26), 264503.
Dabiri, S. & Tryggvason, G. 2015 Heat transfer in turbulent bubbly flow in vertical channels. Chem. Engng Sci. 122, 106113.
Deckwer, W.-D. 1980 On the mechanism of heat transfer in bubble column reactors. Chem. Engng Sci. 35 (6), 13411346.
Deen, N. G. & Kuipers, J. A. M. 2013 Direct numerical simulation of wall-to-liquid heat transfer in dispersed gas–liquid two-phase flow using a volume of fluid approach. Chem. Engng Sci. 102, 268282.
Elder, J. W. 1965 Turbulent free convection in a vertical slot. J. Fluid Mech. 23 (1), 99111.
van Gils, D. P. M., Narezo Guzman, D., Sun, C. & Lohse, D. 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.
Kimura, S. & Bejan, A. 1984 The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side. Trans. ASME J. Heat Transfer 106 (1), 99103.
Kitagawa, A., Kosuge, K., Uchida, K. & Hagiwara, Y. 2008 Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection. Exp. Fluids 45 (3), 473484.
Kitagawa, A. & Murai, Y. 2013 Natural convection heat transfer from a vertical heated plate in water with microbubble injection. Chem. Engng Sci. 99, 215224.
Kitagawa, A., Uchida, K. & Hagiwara, Y. 2009 Effects of bubble size on heat transfer enhancement by sub-millimeter bubbles for laminar natural convection along a vertical plate. Intl J. Heat Fluid Flow 30 (4), 778788.
Lakkaraju, R., Stevens, R., Oresta, P., Verzicco, R., Lohse, D. & Prosperetti, A. 2013 Heat transport in bubbling turbulent convection. Proc. Natl Acad. Sci. USA 110 (23), 92379242.
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
Loisy, A.2016 Direct numerical simulation of bubbly flows: coupling with scalar transport and turbulence. PhD thesis, Université de Lyon.
Markatos, N. C. & Pericleous, K. A. 1984 Laminar and turbulent natural convection in an enclosed cavity. Intl J. Heat Mass Transfer 27 (5), 755772.
Mercado Martínez, J., Chehata Gǿmez, D., Van Gils, D., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.
Narezo Guzman, D., Fraczek, T., Reetz, C., Sun, C., Lohse, D. & Ahlers, G. 2016a Vapour–bubble nucleation and dynamics in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 795, 6095.
Narezo Guzman, D., Xie, Y., Chen, S., Rivas, D. F., Sun, C., Lohse, D. & Ahlers, G. 2016b Heat–flux enhancement by vapour–bubble nucleation in Rayleigh–Bénard turbulence. J. Fluid Mech. 787, 331366.
Ng, C. S., Ooi, A., Lohse, D. & Chung, D. 2015 Vertical natural convection: application of the unifying theory of thermal convection. J. Fluid Mech. 764, 349361.
Ng, C. S., Ooi, A., Lohse, D. & Chung, D. 2017 Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection. J. Fluid Mech. 825, 550572.
Oresta, P., Verzicco, R., Lohse, D. & Prosperetti, A. 2009 Heat transfer mechanisms in bubbly Rayleigh–Bénard convection. Phys. Rev. E 80 (2), 026304.
van der Poel, E. P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall–bounded flows. Comput. Fluids 116, 1016.
Prakash, V. N., Martínez Mercado, J., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D. & Sun, C. 2016 Energy spectra in turbulent bubbly flows. J. Fluid Mech. 791, 174190.
Rensen, J., Luther, S. & Lohse, D. 2005 The effect of bubbles on developed turbulence. J. Fluid Mech. 538, 153187.
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.
Risso, F. & Ellingsen, K. 2002 Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395410.
Roche, P.-E., Castaing, B., Chabaud, B. & Hébral, B. 2001 Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63 (4), 045303.
Roghair, I., Martinez Mercado, J., Van Sint Annaland, M., Kuipers, H., Sun, C. & Lohse, D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations versus experiments. Intl J. Multiphase Flow 37 (9), 10931098.
Sato, Y., Sadatomi, M. & Sekoguchi, K. 1981a Momentum and heat transfer in two-phase bubble flow. Part I. Theory. Intl J. Multiphase Flow 7 (2), 167177.
Sato, Y., Sadatomi, M. & Sekoguchi, K. 1981b Momentum and heat transfer in two-phase bubble flow. Part II. A comparison between experimental data and theoretical calculations. Intl J. Multiphase Flow 7 (2), 179190.
Schmidt, L. E., Oresta, P., Toschi, F., Verzicco, R., Lohse, D. & Prosperetti, A. 2011 Modification of turbulence in Rayleigh–Bénard convection by phase change. New J. Phys. 13 (2), 025002.
Sekoguchi, K., Nakazatomi, M. & Tanaka, O. 1980 Forced convective heat transfer in vertical air–water bubble flow. Bull. JSME 23 (184), 16251631.
Shakerin, S., Bohn, M. & Loehrke, R. 1988 Natural convection in an enclosure with discrete roughness elements on a vertical heated wall. Intl J. Multiphase Flow 31 (7), 14231430.
Shishkina, O. & Horn, S. 2016 Thermal convection in inclined cylindrical containers. J. Fluid Mech. 790, R3.
Spandan, V., Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2016 Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach. J. Fluid Mech. 798, 411435.
Tisserand, J.-C., Creyssels, M., Gasteuil, Y., Pabiou, H., Gibert, M., Castaing, B. & Chilla, F. 2011 Comparison between rough and smooth plates within the same Rayleigh–Bénard cell. Phys. Fluids 23 (1), 015105.
Tokuhiro, A. T. & Lykoudis, P. S. 1994 Natural convection heat transfer from a vertical plate. Part I. Enhancement with gas injection. Intl J. Heat Mass Transfer 37 (6), 9971003.
Van Den Berg, T. H., Luther, S., Mazzitelli, I. M., Rensen, J. M., Toschi, F. & Lohse, D. 2006 Turbulent bubbly flow. J. Turbul. (7), N14.
Xie, Y.-C. & Xia, K.-Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.
Zhong, J.-Q., Funfschilling, D. & Ahlers, G. 2009 Enhanced heat transport by turbulent two-phase Rayleigh–Bénard convection. Phys. Rev. Lett. 102 (12), 124501.
Zhu, X., Phillips, E., Spandan, V., Donners, J., Ruetsch, G., Romero, J., Ostilla-Mónico, R., Yang, Y., Lohse, D., Verzicco, R. et al. 2018 AFiD-GPU: a versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters. Comput. Phys. Commun. doi:10.1016/j.cpc.2018.03.026.
Zhu, X., Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2017 Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection. Phys. Rev. Lett. 119 (15), 154501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed