Skip to main content
×
×
Home

Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder

  • J. Zhao (a1), D. Lo Jacono (a2), J. Sheridan (a1), K. Hourigan (a1) and M. C. Thompson (a1)...
Abstract

This study experimentally investigates the in-line flow-induced vibration (FIV) of an elastically mounted circular cylinder under forced axial rotation in a free stream. The present experiments characterise the structural vibration, fluid forces and wake structure of the fluid–structure system at a low mass ratio (the ratio of the total mass to the displaced fluid mass) over a wide parameter space spanning the reduced velocity range $5\leqslant U^{\ast }\leqslant 32$ and the rotation rate range $0\leqslant \unicode[STIX]{x1D6FC}\leqslant 3.5$ , where $U^{\ast }=U/(\,f_{nw}D)$ and $\unicode[STIX]{x1D6FC}=|\unicode[STIX]{x1D6FA}|D/(2U)$ , with $U$ the free-stream velocity, $D$ the cylinder outer diameter, $f_{nw}$ the natural frequency of the system in quiescent water and $|\unicode[STIX]{x1D6FA}|$ the angular velocity of the cylinder rotation. The corresponding Reynolds number (defined by $Re=UD/\unicode[STIX]{x1D708}$ , with $\unicode[STIX]{x1D708}$ the kinematic viscosity of the fluid) was varied over the interval $1349\leqslant Re\leqslant 8624$ , where it is expected that the FIV response is likely to be relatively insensitive to the Reynolds number. The fluid–structure system was modelled using a low-friction air-bearing system in conjunction with a free-surface water-channel facility. Three vibration regions that exhibited vortex-induced vibration (VIV) synchronisation, rotation-induced galloping and desynchronised responses were observed. In both the VIV synchronisation and rotation-induced galloping regions, significant cylinder vibration was found to be correlated with wake–body synchronisation within the rotation rate range $2.20\lesssim \unicode[STIX]{x1D6FC}\lesssim 3.15$ . Of significant interest, the frequency of the streamwise fluid force could be modulated by the imposed rotation to match that of the transverse lift force, resulting in harmonic synchronisation. Measurements using the particle image velocimetry (PIV) technique were performed to identify the wake structure. Interestingly, the imposed rotation can cause regular vortex shedding in in-line FIV at rotation rates that see suppression of the Bénard–von-Kármán vortex shedding in the case of a rigidly mounted cylinder ( $\unicode[STIX]{x1D6FC}\gtrsim 1.75$ ). There is a monotonic increase in the drag coefficient with rotation rate beyond $\unicode[STIX]{x1D6FC}=2$ for a non-oscillating rotating cylinder. This suggests that the mechanism for sustaining the large rotation-induced galloping oscillations at higher $\unicode[STIX]{x1D6FC}$ is due to a combination of aerodynamic forcing from the locked induced vortex shedding associated with the oscillations, assisted by aerodynamic forcing, evaluated using quasi-steady theory.

Copyright
Corresponding author
Email address for correspondence: jisheng.zhao@monash.edu
References
Hide All
Badr, H., Coutanceau, M., Dennis, S. & Menard, C. 1990 Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104 . J. Fluid Mech. 220, 459484.
Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16 (1), 195222.
Bearman, P. W., Gartshore, I. S., Maull, D. & Parkinson, G. V. 1987 Experiments on flow-induced vibration of a square-section cylinder. J. Fluids Struct. 1 (1), 1934.
Blevins, R. D. 1990 Flow-Induced Vibration, 2nd edn. Krieger Publishing Company.
Bourguet, R. & Lo Jacono, D. 2014 Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 740, 342380.
Bourguet, R. & Lo Jacono, D. 2015 In-line flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 781, 127165.
Brooks, P. H. N.1960 Experimental investigation of the aeroelastic instability of bluff two-dimensional cylinders. M.A.Sc., University of British Columbia.
Cagney, N. & Balabani, S. 2013a Mode competition in streamwise-only vortex induced vibrations. J. Fluids Struct. 41, 156165.
Cagney, N. & Balabani, S. 2013b Wake modes of a cylinder undergoing free streamwise vortex-induced vibrations. J. Fluids Struct. 38, 127145.
Cagney, N. & Balabani, S. 2014 Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom. J. Fluid Mech. 758, 702727.
Corless, R. & Parkinson, G. V. 1988 A model of the combined effects of vortex-induced oscillation and galloping. J. Fluids Struct. 2 (3), 203220.
Coutanceau, M. & Ménard, C. 1985 Influence of rotation on the near-wake development behind an impulsively started circular cylinder. J. Fluid Mech. 158, 399446.
Den Hartog, J. P. 1932 Transmission line vibration due to sleet. Trans. Amer. Institute of Electrical Engineers 51 (4), 10741076.
Feng, C. C.1968 The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders. Master’s thesis, The University of British Columbia.
Fouras, A., Lo Jacono, D. & Hourigan, K. 2008 Target-free stereo PIV: a novel technique with inherent error estimation and improved accuracy. Exp. Fluids 44 (2), 317329.
Govardhan, R. & Williamson, C. H. K. 2000 Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130.
Govardhan, R. & Williamson, C. H. K. 2006 Defining the ‘modified Griffin plot’ in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping. J. Fluid Mech. 561, 147180.
Jauvtis, N. & Williamson, C. H. K. 2004 The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 2362.
Khalak, A. & Williamson, C. H. K. 1996 Dynamics of a hydroelastic cylinder with very low mass and damping. J. Fluids Struct. 10 (5), 455472.
Khalak, A. & Williamson, C. H. K. 1997 Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. J. Fluids Struct. 11 (8), 973982.
Klamo, J. T., Leonard, A. & Roshko, A. 2005 On the maximum amplitude for a freely vibrating cylinder in cross-flow. J. Fluids Struct. 21 (4), 429434.
Konstantinidis, E. 2014 On the response and wake modes of a cylinder undergoing streamwise vortex-induced vibration. J. Fluids Struct. 45, 256262.
Kumar, S., Cantu, C. & Gonzalez, B. 2011 Flow past a rotating cylinder at low and high rotation rates. Trans. ASME J. Fluids Engng 133 (4), 041201.
Leontini, J. S., Lo Jacono, D. & Thompson, M. C. 2011 A numerical study of an inline oscillating cylinder in a free stream. J. Fluid Mech. 688, 551568.
Mittal, S. & Kumar, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 303334.
Naudascher, E. & Rockwell, D. 2005 Flow-Induced Vibrations: An Engineering Guide. Dover.
Nemes, A., Zhao, J., Lo Jacono, D. & Sheridan, J. 2012 The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 710, 102130.
Païdoussis, M., Price, S. & De Langre, E. 2010 Fluid–Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.
Parnaudeau, P., Carlier, J., Heitz, D. & Lamballais, E. 2008 Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20 (8), 085101.
Pralits, J. O., Giannetti, F. & Brandt, L. 2013 Three-dimensional instability of the flow around a rotating circular cylinder. J. Fluid Mech. 730, 518.
Radi, A., Thompson, M. C., Rao, A., Hourigan, K. & Sheridan, J. 2013 Experimental evidence of new three-dimensional modes in the wake of a rotating cylinder. J. Fluid Mech. 734, 567594.
Rao, A., Leontini, J., Thompson, M. C. & Hourigan, K. 2013 Three-dimensionality in the wake of a rotating cylinder in a uniform flow. J. Fluid Mech. 717, 129.
Rao, A., Radi, A., Leontini, J. S., Thompson, M. C., Sheridan, J. & Hourigan, K. 2015 A review of rotating cylinder wake transitions. J. Fluids Struct. 53, 214.
Reid, E. G.1924 Tests of rotating cylinders. NACA Tech. Memorandum 209.
Sareen, A., Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K. & Thompson, M. C. 2018 Vortex-induced vibration of a rotating sphere. J. Fluid Mech. 837, 258292.
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19 (4), 389447.
Seifert, J. 2012 A review of the Magnus effect in aeronautics. Prog. Aerosp. Sci. 55, 1745.
Stojković, D., Breuer, M. & Durst, F. 2002 Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14 (9), 31603178.
Swanson, W. M. 1961 The Magnus effect: a summary of investigations to date. Trans. ASME J. Basic Engng 83 (3), 461.
Wang, Z., Du, L., Zhao, J. & Sun, X. 2017 Structural response and energy extraction of a fully passive flapping foil. J. Fluids Struct. 72, 96113.
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibration. Annu. Rev. Fluid Mech. 36, 413455.
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.
Wong, K. W. L., Zhao, J., Lo Jacono, D., Thompson, M. C. & Sheridan, J. 2017 Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 829, 486511.
Zhao, J., Leontini, J. S., Lo Jacono, D. & Sheridan, J. 2014a Chaotic vortex induced vibrations. Phys. Fluids 26 (12), 121702.
Zhao, J., Leontini, J. S., Lo Jacono, D. & Sheridan, J. 2014b Fluid–structure interaction of a square cylinder at different angles of attack. J. Fluid Mech. 747, 688721.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movies

Zhao et al. supplementary movie 6
Phase-averaged vorticity contours showing evolution of the CA-II wake pattern at (α, U*) = (2.75, 12.0).

 Video (4.6 MB)
4.6 MB
VIDEO
Movies

Zhao et al. supplementary movie 4
Wake structure at (α, U*) = (3.25, 20.0).

 Video (3.2 MB)
3.2 MB
VIDEO
Movies

Zhao et al. supplementary movie 3
Wake structure at (α, U*) = (2.75, 7.0).

 Video (3.6 MB)
3.6 MB
VIDEO
Movies

Zhao et al. supplementary movie 5
Phase-averaged vorticity contours showing evolution of the A(2S) wake pattern at (α, U*) = (2.75, 10.0).

 Video (4.4 MB)
4.4 MB
VIDEO
Movies

Zhao et al. supplementary movie 1
Wake structure at (α, U*) = (2.00, 10.0).

 Video (4.5 MB)
4.5 MB
VIDEO
Movies

Zhao et al. supplementary movie 2
Wake structure at (α, U*) = (2.00, 20.0).

 Video (4.6 MB)
4.6 MB
VIDEO
Movies

Zhao et al. supplementary movie 7
Phase-averaged vorticity contours showing evolution of the CA-III wake pattern at (α, U*) = (2.75, 20.0).

 Video (4.4 MB)
4.4 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed