Skip to main content

Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence

  • Elise Alméras (a1), Varghese Mathai (a1), Detlef Lohse (a1) (a2) and Chao Sun (a1) (a3)

This work reports an experimental characterisation of the flow properties in a homogeneous bubble swarm rising at high Reynolds numbers within a homogeneous and isotropic turbulent flow. Both the gas volume fraction $\unicode[STIX]{x1D6FC}$ and the velocity fluctuations $u_{0}^{\prime }$ of the carrier flow before bubble injection are varied, respectively, in the ranges $0\,\%<\unicode[STIX]{x1D6FC}<0.93\,\%$ and $2.3~\text{cm}~\text{s}^{-1} . The so-called bubblance parameter ( $b=V_{r}^{2}\unicode[STIX]{x1D6FC}/u_{0}^{\prime 2}$ , where $V_{r}$ is the bubble relative rise velocity) is used to compare the ratio of the kinetic energy generated by the bubbles to the one produced by the incident turbulence, and is varied from 0 to 1.3. Conditional measurements of the velocity field downstream of the bubbles in the vertical direction allow us to disentangle three regions that have specific statistical properties, namely the primary wake, the secondary wake and the far field. While the fluctuations in the primary wake are similar to that of a single bubble rising in a liquid at rest, the statistics of the velocity fluctuations in the far field follow a Gaussian distribution, similar to that produced by the homogenous and isotropic turbulence at the largest scales. In the secondary wake region, the conditional probability density function of the velocity fluctuations is asymmetric and shows an exponential tail for the positive fluctuations and a Gaussian one for the negative fluctuations. The overall agitation thus results from the combination of these three contributions and depends mainly on the bubblance parameter. For $0 , the overall velocity fluctuations in the vertical direction evolve as $b^{0.4}$ and are mostly driven by the far-field agitation, whereas the fluctuations increase as $b^{1.3}$ for larger values of the bubblance parameter ( $b>0.7$ ), in which the significant contributions come both from the secondary wake and the far field. Thus, the bubblance parameter is a suitable parameter to characterise the evolution of liquid agitation in bubbly turbulent flows.

Corresponding author
Email address for correspondence:
Hide All
Alméras E., Cazin S., Roig V., Risso F., Augier F. & Plais C. 2016 Time-resolved measurement of concentration fluctuations in a confined bubbly flow by lif. Intl J. Multiphase Flow 83, 153161.
Balachandar S. & Eaton J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
van den Berg T. H., Luther S. & Lohse D. 2006 Energy spectra in microbubbly turbulence. Phys. Fluids 18 (3), 8103.
Cisse M., Saw E.-W., Gibert M., Bodenschatz E. & Bec J. 2015 Turbulence attenuation by large neutrally buoyant particles. Phys. Fluids 27 (6), 061702.
Colombet D., Legendre D., Risso F., Cockx A. & Guiraud P. 2015 Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction. J. Fluid Mech. 763, 254285.
Darmana D., Deen N. G. & Kuipers J. A. M. 2005 Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model. Chem. Engng Sci. 60 (12), 33833404.
Ellingsen K., Risso F., Roig V. & Suzanne C. 1997 Improvements of velocity measurements in bubbly flows by comparison of simultaneous hot-film and laser-doppler anemometry signals. In Proceedings of ASME Fluid Engng Div. Summer Meeting, Vancouver, Canada.
Hinze J. O. 1975 Turbulence. McGraw-Hill.
Honkanen M. 2009 Reconstruction of three-dimensional bubble surface from high-speed orthogonal imaging of dilute bubbly flow. In Proceedings of Comput. Meth. Multiphase flow V, pp. 469480. WIT Press.
Lance M. & Bataille J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.
Legendre D., Merle A. & Magnaudet J. 2006 Wake of a spherical bubble or a solid sphere set fixed in a turbulent environment. Phys. Fluids 18 (4), 048102.
Mathai V., Calzavarini E., Brons J., Sun C. & Lohse D. 2016a Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117 (2), 024501.
Mathai V., Neut M. W. M., van der Poel E. P. & Sun C. 2016b Translational and rotational dynamics of a large buoyant sphere in turbulence. Exp. Fluids 57 (4), 110.
Mathai V., Prakash V. N., Brons J., Sun C. & Lohse D. 2015 Wake-driven dynamics of finite-sized buoyant spheres in turbulence. Phys. Rev. Lett. 115 (12), 124501.
Mazzitelli I. M. & Lohse D. 2004 Lagrangian statistics for fluid particles and bubbles in turbulence. New J. Phys. 6 (1), 203.
Mazzitelli I. M., Lohse D. & Toschi F. 2003 The effect of microbubbles on developed turbulence. Phys. Fluids 15 (1), L5L8.
Mendez-Diaz S., Serrano-Garcia J. C., Zenit R. & Hernandez-Cordero J. A. 2013 Power spectral distributions of pseudo-turbulent bubbly flows. Phys. Fluids 25 (4), 043303.
Mercado J. M., Gomez D. C., Van Gils D., Sun C. & Lohse D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.
Mercado J. M., Prakash V. N., Tagawa Y., Sun C. & Lohse D. 2012 Lagrangian statistics of light particles in turbulence. Phys. Fluids 24 (5), 055106.
Poorte R. E. G. & Biesheuvel A. 2002 Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech. 461, 127154.
Pope S. B. 2000 Turbulent Flow. Cambridge University Press.
Prakash V. N., Mercado J. M., van Wijngaarden L., Mancilla E., Tagawa Y., Lohse D. & Sun C. 2016 Energy spectra in turbulent bubbly flows. J. Fluid Mech. 791, 174190.
Rensen J., Luther S. & Lohse D. 2005 The effect of bubbles on developed turbulence. J. Fluid Mech. 538, 153187.
Riboux G., Legendre D. & Risso F. 2013 A model of bubble-induced turbulence based on large-scale wake interactions. J. Fluid Mech. 719, 362387.
Riboux G., Risso F. & Legendre D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.
Risso F. 2016 Physical interpretation of probability density functions of bubble-induced agitation. J. Fluid Mech. 809, 240.
Risso F. & Ellingsen K. 2002 Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395410.
Roghair I., Mercado J. M., Annaland M. V. S., Kuipers H., Sun C. & Lohse D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations versus experiments. Intl J. Multiphase Flow 37 (9), 10931098.
Roig V. & De Tournemine A. L. 2007 Measurement of interstitial velocity of homogeneous bubbly flows at low to moderate void fraction. J. Fluid Mech. 572, 87110.
Shew W. L., Poncet S. & Pinton J. 2006 Force measurements on rising bubbles. J. Fluid Mech. 569 (1), 5160.
Van der Hoef M. A., van Sint Annaland M., Deen N. G. & Kuipers J. A. M. 2008 Numerical simulation of dense gas–solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 4770.
Van Wijngaarden L. 1998 On pseudo turbulence. Theor. Comput. Fluid Dyn. 10 (1), 449458.
Wu M. & Gharib M. 2002 Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids 14 (7), L49L52.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 123 *
Loading metrics...

Abstract views

Total abstract views: 185 *
Loading metrics...

* Views captured on Cambridge Core between 27th July 2017 - 18th November 2017. This data will be updated every 24 hours.