Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T06:43:28.479Z Has data issue: false hasContentIssue false

Experimental investigation of tsunami waves generated by granular collapse into water

Published online by Cambridge University Press:  18 November 2020

Manon Robbe-Saule
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire FAST, 91405Orsay, France
Cyprien Morize*
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire FAST, 91405Orsay, France
Robin Henaff
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire FAST, 91405Orsay, France
Yann Bertho
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire FAST, 91405Orsay, France
Alban Sauret
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA93106, USA
Philippe Gondret
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire FAST, 91405Orsay, France
*
Email address for correspondence: cyprien.morize@universite-paris-saclay.fr

Abstract

The generation of a tsunami wave by an aerial landslide is investigated through model laboratory experiments. We examine the collapse of an initially dry column of grains into a shallow water layer and the subsequent generation of waves. The experiments show that the collective entry of the granular material into water governs the wave generation process. We observe that the amplitude of the wave relative to the water height scales linearly with the Froude number based on the horizontal velocity of the moving granular front relative to the wave velocity. For all the different parameters considered here, the aspect ratio and the volume of the column, the diameter and density of the grains, and the height of the water, the granular collapse acts like a moving piston displacing the water. We also highlight that the density of the falling grains has a negligible influence on the wave amplitude, which suggests that the volume of grains entering the water is the relevant parameter in the wave generation.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abadie, S. M., Harris, J. C., Grilli, S. T. & Fabre, R. 2012 Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. J. Geophys. Res.: Oceans 117, C05030.Google Scholar
Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.10.1017/S0022112005005537CrossRefGoogle Scholar
Bertho, Y., Giorgiutti-Dauphiné, F. & Hulin, J.-P. 2003 Dynamical Janssen effect on granular packing with moving walls. Phys. Rev. Lett. 90 (14), 144301.10.1103/PhysRevLett.90.144301CrossRefGoogle ScholarPubMed
Bougouin, A. & Lacaze, L. 2018 Granular collapse in a fluid: different flow regimes for an initially dense-packing. Phys. Rev. Fluids 3 (6), 064305.10.1103/PhysRevFluids.3.064305CrossRefGoogle Scholar
Bougouin, A., Lacaze, L. & Bonometti, T. 2017 Collapse of a neutrally Buoyant suspension column: from Newtonian to apparent non-Newtonian flow regimes. J. Fluid Mech. 826, 918941.10.1017/jfm.2017.471CrossRefGoogle Scholar
Boussinesq, J. 1872 Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures et Appliquées 2, 55.Google Scholar
Bryant, E. 2014 Tsunami: the Underrated Hazard. Springer.Google Scholar
Bullard, G. K., Mulligan, R. P., Carreira, A. & Take, W. A. 2019 Experimental analysis of tsunamis generated by the impact of landslides with high mobility. Coast. Engng 152, 103538.10.1016/j.coastaleng.2019.103538CrossRefGoogle Scholar
Carrier, G. F., Wu, T. T. & Yeh, H. 2003 Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. 475, 7999.10.1017/S0022112002002653CrossRefGoogle Scholar
Costard, F., Séjourné, A., Kelfoun, K., Clifford, S., Lavigne, F., Di Pietro, I. & Bouley, S. 2017 Modeling tsunami propagation and the emplacement of thumbprint terrain in an early mars ocean. J. Geophys. Res.: Planet 122 (3), 633649.10.1002/2016JE005230CrossRefGoogle Scholar
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 a Granular avalanches in fluids. Phys. Rev. Lett. 90 (4), 044301.10.1103/PhysRevLett.90.044301CrossRefGoogle ScholarPubMed
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 b Wall effects on granular heap stability. Europhys. Lett. 61 (4), 492498.10.1209/epl/i2003-00156-5CrossRefGoogle Scholar
Couston, L.-A., Mei, C. C. & Alam, M.-R. 2015 Landslide tsunamis in lakes. J. Fluid Mech. 772, 784804.10.1017/jfm.2015.190CrossRefGoogle Scholar
Cremonesi, M., Frangi, A. & Perego, U. 2011 A lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput. Struct. 89 (11–12), 10861093.10.1016/j.compstruc.2010.12.005CrossRefGoogle Scholar
Das, M. M. & Wiegel, R. L. 1972 Waves generated by horizontal motion of a wall. J. Waterways Harbors Div. ASCE 98 (1), 4965.Google Scholar
Dauxois, T. & Peyrard, M. 2006 Physics of Solitons. Cambridge University Press.Google Scholar
Deike, L., Popinet, S. & Melville, W. K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.10.1017/jfm.2015.103CrossRefGoogle Scholar
Fritz, H. M., Hager, W. H. & Minor, H.-E. 2003 a Landslide generated impulse waves. 1. Instantaneous flow fields. Exp. Fluids 35 (6), 505519.10.1007/s00348-003-0659-0CrossRefGoogle Scholar
Fritz, H. M., Hager, W. H. & Minor, H.-E. 2003 b Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp. Fluids 35 (6), 520532.10.1007/s00348-003-0660-7CrossRefGoogle Scholar
Fritz, H. M., Hager, W. H. & Minor, H.-E. 2004 Near field characteristics of landslide generated impulse waves. J. Waterways Port Coast. Ocean Div. ASCE 130 (6), 287302.10.1061/(ASCE)0733-950X(2004)130:6(287)CrossRefGoogle Scholar
Giachetti, T., Paris, R., Kelfoun, K. & Ontowirjo, B. 2012 Tsunami hazard related to a flank collapse of Anak Krakatau volcano, Sunda Strait, Indonesia. Geol. Soc. Lond. Special Publ. 361 (1), 7990.10.1144/SP361.7CrossRefGoogle Scholar
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F. L., Ward, S. N., Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T. & Schambach, L. 2019 Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep. 9, 11946.10.1038/s41598-019-48327-6CrossRefGoogle ScholarPubMed
Heinrich, P. 1992 Nonlinear water waves generated by submarine and aerial landslides. J. Waterways Port Coast. Ocean Div. ASCE 118 (3), 249266.10.1061/(ASCE)0733-950X(1992)118:3(249)CrossRefGoogle Scholar
Heller, V. & Hager, W. H. 2010 Impulse product parameter in landslide generated impulse waves. J. Waterways Port Coast. Ocean Div. ASCE 136 (3), 145155.10.1061/(ASCE)WW.1943-5460.0000037CrossRefGoogle Scholar
Ionescu, I. R., Mangeney, A., Bouchut, F. & Roche, O. 2015 Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non-Newtonian Fluid Mech. 219, 118.10.1016/j.jnnfm.2015.02.006CrossRefGoogle Scholar
Jamin, T., Gordillo, L., Ruiz-Chavarría, G., Berhanu, M. & Falcon, E. 2015 Experiments on generation of surface waves by an underwater moving bottom. Proc. R. Soc. Lond. A 471 (2178), 20150069.Google Scholar
Jensen, A., Pedersen, G. K. & Wood, D. J. 2003 An experimental study of wave run-up at a steep beach. J. Fluid Mech. 486, 161188.10.1017/S0022112003004543CrossRefGoogle Scholar
Kelfoun, K., Giachetti, T. & Labazuy, P. 2010 Landslide-generated tsunamis at réunion island. J. Geophys. Res.: Earth 115, F04012.Google Scholar
Kremer, K., Simpson, G. & Girardclos, S. 2012 Giant Lake Geneva tsunami in AD 563. Nat. Geosci. 5 (11), 756.10.1038/ngeo1618CrossRefGoogle Scholar
Lacaze, L., Phillips, J. C. & Kerswell, R. R. 2008 Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20 (6), 063302.10.1063/1.2929375CrossRefGoogle Scholar
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a $\mu$(i)-rheology. J. Fluid Mech. 686, 378408.10.1017/jfm.2011.335CrossRefGoogle Scholar
Lajeunesse, E., Monnier, J. B. & Homsy, G. M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17, 103302.10.1063/1.2087687CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Larrieu, E., Staron, L. & Hinch, E. J. 2006 Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259270.10.1017/S0022112005007974CrossRefGoogle Scholar
Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C. E. & Borrero, J. C. 2005 Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 536, 107144.10.1017/S0022112005004799CrossRefGoogle Scholar
Madsen, P. A. & Schaffer, H. A. 2010 Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves. J. Fluid Mech. 645, 2757.10.1017/S0022112009992485CrossRefGoogle Scholar
McCowan, John 1894 On the highest wave of permanent type. Lond. Edinb. Dublin Phil. Mag. J. Sci. 38 (233), 351358.10.1080/14786449408620643CrossRefGoogle Scholar
McFall, B. C. & Fritz, H. M. 2016 Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc. R. Soc. Lond. A 472 (2188), 20160052.Google ScholarPubMed
Meriaux, C. 2006 Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall. Phys. Fluids 18, 093301.10.1063/1.2335477CrossRefGoogle Scholar
Meruane, C., Tamburrino, A. & Roche, O. 2010 On the role of the ambient fluid on gravitational granular flow dynamics. J. Fluid Mech. 648, 381404.10.1017/S0022112009993181CrossRefGoogle Scholar
Miller, G. S., Take, W. A., Mulligan, R. P. & McDougall, S. 2017 Tsunamis generated by long and thin granular landslides in a large flume. J. Geophys. Res.: Oceans 122, 653668.10.1002/2016JC012177CrossRefGoogle Scholar
Miller, R. L. & White, R. V. 1966 A single-impulse system for generating solitary, undulating surge and gravity shock waves in the laboratory. Fluid Dynamics and Sediment Transport Laboratory Report 5 (Dept. Geophys. Sci., Univ. Chicago).Google Scholar
Monaghan, J. J. & Kos, A. 2000 Scott Russell's wave generator. Phys. Fluids 12 (3), 622630.10.1063/1.870269CrossRefGoogle Scholar
Monserrat, S., Vilibic, I. & Rabinovich, A. B. 2006 Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Nat. Hazards Earth Syst. Sci. 6 (6), 10351051.10.5194/nhess-6-1035-2006CrossRefGoogle Scholar
Mori, N., Takahashi, T., Yasuda, T. & Yanagisawa, H. 2011 Survey of 2011 tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett. 38, L00G14.10.1029/2011GL049210CrossRefGoogle Scholar
Noda, E. 1970 Water waves generated by landslides. J. Waterways Harbors Div. ASCE 96, 835855.Google Scholar
Paris, A., Heinrich, P., Paris, R. & Abadie, S. 2020 The December 22, 2018 Anak Krakatau, Indonesia, landslide and tsunami: preliminary modeling results. Pure Appl. Geophys. 177 (2), 571590.10.1007/s00024-019-02394-yCrossRefGoogle Scholar
Robbe-Saule, M. 2019 Modélisation expérimentale de génération de tsunami par effondrement granulaire. PhD thesis, Université Paris-Saclay .Google Scholar
Robbe-Saule, M, Morize, C., Bertho, Y, Sauret, A., Hildenbrandt, A. & Gondret, P. 2020 Tsunamis generated by subaerial landslides: from laboratory experiments to geophysical events. Geophys. Res. Lett. (submitted).Google Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (7), 073301.10.1063/1.3594200CrossRefGoogle Scholar
Russell, J. S. 1844 Report on waves. British Association Reports.Google Scholar
Staron, L. & Hinch, E. J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.10.1017/S0022112005006415CrossRefGoogle Scholar
Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E. & González, F. I. 2005 The global reach of the 26 December 2004 Sumatra tsunami. Science 309 (5743), 20452048.10.1126/science.1114576CrossRefGoogle ScholarPubMed
Topin, V., Monerie, Y., Perales, F. & Radjai, F. 2012 Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109 (18), 188001.10.1103/PhysRevLett.109.188001CrossRefGoogle Scholar
Viroulet, S., Cébron, D., Kimmoun, O. & Kharif, C. 2013 a Shallow water waves generated by subaerial solid landslides. Geophys. J. Intl 193 (2), 747762.10.1093/gji/ggs133CrossRefGoogle Scholar
Viroulet, S., Sauret, A. & Kimmoun, O. 2014 Tsunami generated by a granular collapse down a rough inclined plane. Europhys. Lett. 105, 34004.10.1209/0295-5075/105/34004CrossRefGoogle Scholar
Viroulet, S., Sauret, A., Kimmoun, O. & Kharif, C. 2013 b Granular collapse into water: toward tsunami landslides. J. Vis. (Visualization) 16 (3), 189191.10.1007/s12650-013-0171-4CrossRefGoogle Scholar
Zenit, R. 2005 Computer simulations of the collapse of a granular column. Phys. Fluids 17 (3), 031703.10.1063/1.1862240CrossRefGoogle Scholar
Zheng, Y. Z., Huppert, H. E., Vriend, N. M., Neufeld, J. A. & Linden, P. F. 2018 Flow of buoyant granular materials along a free surface. J. Fluid Mech. 848, 312339.10.1017/jfm.2018.315CrossRefGoogle Scholar
Zhou, Y., Lagrée, P.-Y., Popinet, S., Ruyer, P. & Aussillous, P. 2017 Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice. J. Fluid Mech. 829, 459485.10.1017/jfm.2017.543CrossRefGoogle Scholar
Zitti, G., Ancey, C., Postacchini, M. & Brocchini, M. 2016 Impulse waves generated by snow avalanches: momentum and energy transfer to a water body. J. Geophys. Res.: Earth 121 (12), 23992423.10.1002/2016JF003891CrossRefGoogle Scholar