Hostname: page-component-7f64f4797f-8cpv7 Total loading time: 0 Render date: 2025-11-06T09:55:37.925Z Has data issue: false hasContentIssue false

Experimental study of diffusiophoresis in a cellular flow

Published online by Cambridge University Press:  04 November 2025

Florence Raynal*
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS UMR 5509, École centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1 , Écully CÉDEX 69134, France
Menghua Zhao
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS UMR 5509, École centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1 , Écully CÉDEX 69134, France Laboratoire de Physique, ENS de Lyon, CNRS, Lyon F-69342, France
Romain Volk
Affiliation:
Laboratoire de Physique, ENS de Lyon, CNRS, Lyon F-69342, France
*
Corresponding author: Florence Raynal, florence.raynal@ec-lyon.fr

Abstract

In this paper, we study experimentally the dispersion of colloids in a two-dimensional, time-independent, Rayleigh–Bénard flow in the presence of salt gradients. Due to the additional scalar, the colloids do not follow exactly the Eulerian flow field, but have a (small) extra velocity $\boldsymbol{v}_{{dp}} = D_{{dp}}\, \boldsymbol{\nabla }\log C_s$, where $D_{{dp}}$ is the phoretic constant, and $C_s$ is the salt concentration. Such a configuration is motivated by the theoretical work by Volk et al. (2022, J. Fluid Mech., vol. 948, A42), which predicted enhanced transport or blockage in a stationary cellular flow depending on the value of a blockage coefficient. By means of high dynamical range light-induced fluorescence, we study the evolution of the colloids concentration field at large Péclet number. We find good agreement with the theoretical work, although a number of hypotheses are not satisfied, as the experiment is non-homogeneous in space, and intrinsically transient. In particular, we observe enhanced transport when salt and colloids are injected at both ends of the Rayleigh–Bénard chamber, and blockage when colloids and salt are injected together and phoretic effects are strong enough.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abécassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A. & Bocquet, L. 2009 Osmotic manipulation of particles for microfluidic applications. New J. Phys. 11 (7), 075022.10.1088/1367-2630/11/7/075022CrossRefGoogle Scholar
Anderson, J.L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.10.1146/annurev.fl.21.010189.000425CrossRefGoogle Scholar
Ault, J.T. & Shin, S. 2025 Physicochemical hydrodynamics of particle diffusiophoresis driven by chemical gradients. Annu. Rev. Fluid Mech. 57, 227255.10.1146/annurev-fluid-030424-110950CrossRefGoogle Scholar
Bergougnoux, L., Bouchet, G., Lopez, D. & Guazzelli, E. 2014 The motion of solid spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids 26 (9), 093302.10.1063/1.4895736CrossRefGoogle Scholar
Chu, H.C.W., Garoff, S., Tilton, R.D. & Khair, A.S. 2020 Advective–diffusive spreading of diffusiophoretic colloids under transient solute gradients. Soft Matter 16 (1), 238246.10.1039/C9SM01938CCrossRefGoogle ScholarPubMed
Chu, H.C.W., Garoff, S., Tilton, R.D. & Khair, A.S. 2021 Macrotransport theory for diffusiophoretic colloids and chemotactic microorganisms. J. Fluid Mech. 917, A52.10.1017/jfm.2021.322CrossRefGoogle Scholar
Chu, H.C.W., Garoff, S., Tilton, R.D. & Khair, A. 2022 Tuning chemotactic and diffusiophoretic spreading via hydrodynamic flows. Soft Matter 18, 18961910.10.1039/D2SM00139JCrossRefGoogle ScholarPubMed
Cui, H., Lin, Z., Zhu, K., Cheng, G., Wu, X. & Zheng, R. 2024 Effect of surface corrosion on the zeta potential of copper in acidic solutions. Surf. Interfaces 54, 105291.10.1016/j.surfin.2024.105291CrossRefGoogle Scholar
Derjaguin, B.V., Dukhin, S.S. & Korotkova, A.A. 1961 Diffusiophoresis in electrolyte solutions and its role in the mechanism of the formation of films from caoutchouc latexes by the ionic deposition method. Colloid J. USSR 23, 5358.Google Scholar
Deseigne, J., Cottin-Bizonne, C., Stroock, A.D., Bocquet, L. & Ybert, C. 2014 How a ‘pinch of salt’ can tune chaotic mixing of colloidal suspensions. Soft Matter 10, 47954799.10.1039/c4sm00455hCrossRefGoogle ScholarPubMed
Gupta, A., Shim, S. & Stone, H.A. 2020 Diffusiophoresis: from dilute to concentrated electrolytes. Soft Matter 16 (30), 69756984.10.1039/D0SM00899KCrossRefGoogle ScholarPubMed
Guyon, E., Pomeau, Y., Hulin, J.P. & Baudet, C. 1987 Dispersion in the presence of recirculation zones. Nucl. Phys. B: Proc. Suppl. 2, 271280.10.1016/0920-5632(87)90023-5CrossRefGoogle Scholar
Lee, S., Lee, J. & Ault, J.T. 2023 The role of variable zeta potential on diffusiophoretic and diffusioosmotic transport. Colloids Surf. A: Physicochem. Engng Aspects 659, 130775.10.1016/j.colsurfa.2022.130775CrossRefGoogle Scholar
Mauger, C., Volk, R., Machicoane, N., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Raynal, F. 2016 Diffusiophoresis at the macroscale. Phys. Rev. Fluids 1, 034001.10.1103/PhysRevFluids.1.034001CrossRefGoogle Scholar
Moffatt, H.K. 1983 Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Prog. Phys. 46 (5), 621.10.1088/0034-4885/46/5/002CrossRefGoogle Scholar
Pomeau, Y. 1985 Dispersion dans un écoulement en présence de zones de recirculation. C. R. Acad. Sci. Paris II 301 (19), 13231326.Google Scholar
Prieve, D.C., Anderson, J.L., Ebel, J.P. & Lowell, M.E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247269.10.1017/S0022112084002330CrossRefGoogle Scholar
Raynal, F., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Volk, R. 2018 Advection and diffusion in a chemically induced compressible flow. J. Fluid Mech. 847, 228243.10.1017/jfm.2018.335CrossRefGoogle Scholar
Raynal, F. & Volk, R. 2019 Diffusiophoresis, Batchelor scale and effective Péclet numbers. J. Fluid Mech. 876, 818829.10.1017/jfm.2019.589CrossRefGoogle Scholar
Renaud, A. & Vanneste, J. 2020 Dispersion of inertial particles in cellular flows in the small-Stokes, large-Péclet regime. J. Fluid Mech. 903, A2.10.1017/jfm.2020.632CrossRefGoogle Scholar
Sarver, E., Slabaugh, R., Strock, C. & Edwards, M. 2016 Flow electrification and non-uniform corrosion in low conductivity potable waters. J. Electrochem. Soc. 163 (5), C139.10.1149/2.0171605jesCrossRefGoogle Scholar
Shraiman, B.I. 1987 Diffusive transport in a Rayleigh–Bénard convection cell. Phys. Rev. A 36 (1), 261.10.1103/PhysRevA.36.261CrossRefGoogle Scholar
Solomon, T.H. & Gollub, J.P. 1988 a Chaotic particle transport in time dependent Rayleigh–Bénard convection. Phys. Rev. A 38 (12), 62806286.10.1103/PhysRevA.38.6280CrossRefGoogle ScholarPubMed
Solomon, T.H. & Gollub, J.P. 1988 b Passive transport in steady Rayleigh–Bénard convection. Phys. Fluids 31 (6), 13721379.10.1063/1.866729CrossRefGoogle Scholar
Soward, A.M. 1987 Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267295.10.1017/S0022112087001800CrossRefGoogle Scholar
Swinehart, D.F. 1962 The Beer–Lambert law. J. Chem. Educ. 39 (7), 333.10.1021/ed039p333CrossRefGoogle Scholar
Volk, R., Bourgoin, M., Bréhier, C.-É. & Raynal, F. 2022 Phoresis in cellular flows: from enhanced dispersion to blockage. J. Fluid Mech. 948, A42.10.1017/jfm.2022.730CrossRefGoogle Scholar
Volk, R., Mauger, C., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Raynal, F. 2014 Chaotic mixing in effective compressible flows. Phys. Rev. E 90, 013027.10.1103/PhysRevE.90.013027CrossRefGoogle ScholarPubMed
Wang, F. 2018 Linearity research of a CMOS image sensor. PhD thesis, Delft University of Technology.Google Scholar
Young, W., Pumir, A. & Pomeau, Y. 1989 Anomalous diffusion of tracer in convection rolls. Phys. Fluids A: Fluid Dyn. 1 (3), 462469.10.1063/1.857415CrossRefGoogle Scholar