Skip to main content
    • Aa
    • Aa

Experimental study of the two-dimensional inverse energy cascade in a square box

  • J. Sommeria (a1)

A quantitative experimental study of the two-dimensional inverse energy cascade is presented. The flow is electrically driven in a horizontal layer of mercury and three-dimensional perturbations are suppressed by means of a uniform magnetic field, so that the flow can be well approximated by a two-dimensional Navier–Stokes equation with a steady forcing term and a linear friction due to the Hartmann layer. Turbulence is produced by the instability of a periodic square network of 36 electrically driven alternating vortices. The inverse cascade is limited at large scales, either by the linear friction or by the finite size of the domain, depending on the experimental parameters. In the first case, $k^{-\frac{5}{3}$ spectra are measured and the corresponding two-dimensional Kolmogorov constant is in the range 3–7. In the second case, a condensation of the turbulent energy in the lowest mode, corresponding to a spontaneous mean global rotation, is observed. Such a condensation was predicted by Kraichnan (1967) from statistical thermodynamics arguments, but without the symmetry breaking. Random reversals of the rotation sense, owing to turbulent fluctuations, are more and more sparse as friction is decreased. The lowest mode fluctuations and the small scales are statistically independent.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 203 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th May 2017. This data will be updated every 24 hours.