Skip to main content
×
×
Home

Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice

  • Y. Zhou (a1) (a2), P.-Y. Lagrée (a3), S. Popinet (a3), P. Ruyer (a1) and P. Aussillous (a2)...
Abstract

We compare laboratory experiments, contact dynamics simulations and continuum Navier–Stokes simulations with a $\unicode[STIX]{x1D707}(I)$ visco-plastic rheology, of the discharge of granular media from a silo with a lateral orifice. We consider a rectangular silo with an orifice of height $D$ which spans the silo width $W$ , and we observe two regimes. For small enough aperture aspect ratio ${\mathcal{A}}=D/W$ , the Hagen–Beverloo relation is obtained. For thin enough silos, ${\mathcal{A}}\gg {\mathcal{A}}_{c}$ , we observe a second regime where the outlet velocity varies with $\sqrt{W}$ . This new regime is also obtained in the continuum simulations when the friction on side walls is taken into account in a thickness-averaged version of $\unicode[STIX]{x1D707}(I)$   $+$ Navier–Stokes (in the spirit of Hele-Shaw flows). Moreover most of the internal details of the flow field observed experimentally are reproduced when considering this lateral friction. These two regimes are recovered experimentally for a cylindrical silo with a lateral rectangular orifice of height $D$ and arc length $W$ . The dependency of the flow rate on the particle diameter is found to be reasonably described experimentally using two geometrical functions that depend respectively on the number of beads through the two aperture dimensions. This is consistent with two-dimensional discrete simulation results: at the outlet, the volume fraction and the velocities depend on the particle diameter and this behaviour is correctly described by those geometrical functions. A similar dependency is observed in the two-dimensional continuum simulations.

Copyright
Corresponding author
Email address for correspondence: pascale.aussillous@univ-amu.fr
References
Hide All
Aguirre, M. A., Grande, J. G., Calvo, A., Pugnaloni, L. A. & Géminard, J.-C. 2010 Pressure independence of granular flow through an aperture. Phys. Rev. Lett. 104, 238002.
Benyamine, M., Djermane, M., Dalloz-Dubrujeaud, B. & Aussillous, P. 2014 Discharge flow of a bidisperse granular media from a silo. Phys. Rev. E 90, 032201.
Bertho, Y., Giorgiutti-Dauphiné, F. & Hulin, J.-P. 2003 Dynamical Janssen effect on granular packing with moving walls. Phys. Rev. Lett. 90 (14), 144301.
Beverloo, W. A., Leniger, H. A. & Van de Velde, J. 1961 The flow of granular solids through orifices. Chem. Engng Sci. 15, 260269.
Choi, J., Kudrolli, A. & Bazant, M. Z. 2005 Velocity profile of granular flows inside silos and hoppers. J. Phys.: Condens. Matter 17, S2533S2548.
Davier, G. & Bertails-Descoubes, F. 2016 Nonsmooth simulation of dense granular flows with pressure-dependent yield stress. J. Non-Newtonian Fluid 234, 1535.
Dunatunga, S. & Kamrin, K. 2015 Continuum modelling and simulation of granular flows through their many phases. J. Fluid Mech. 779, 483513.
Janda, A., Zuriguel, I. & Maza, D. 2012 Flow rate of particles through apertures obtained from self-similar density and velocity profiles. Phys. Rev. Lett. 108, 248001.
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.
Lagrée, P.-Y. 2007 Interactive boundary layer in a Hele Shaw cell. Z. Angew. Math. Mech. 87 (7), 489498.
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a Navier–Stokes model with a 𝜇(I)-rheology. J. Fluid Mech. 686, 378408.
Medina, A., Cabrera, D., López-Villa, A. & Pliego, M. 2014 Discharge rates of dry granular material from bins with lateral exit holes. Powder Technol. 253, 270275.
Meunier, P. & Leweke, T. 2003 Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp. Fluids 35 (5), 408421.
Midi, G. D. R. 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.
Perge, C., Aguirre, M. A., Gago, P. A., Pugnaloni, L. A., Tourneau, D. L. & Géminard, J. C. 2012 Evolution of pressure profiles during the discharge of a silo. Phys. Rev. E 85, 021303.
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.
Popinet, S.2013–2016 Basilisk C reference manual. http://basilisk.fr/Basilisk%20C.
Radjai, F. & Dubois, F. 2011 Discrete-Element Modeling of Granular Materials. Wiley.
Rubio-Largo, S. M., Janda, A., Maza, D., Zuriguel, I. & Hidalgo, R. C. 2015 Disentangling the free-fall arch paradox in silo discharge. Phys. Rev. Lett. 114, 238002.
Serrano, D. A., Medina, A., Chavarria, G. R., Pliego, M. & Klapp, J. 2015 Mass flow rate of granular material flowing from tilted bins. Powder Technol. 286, 438443.
Sheldon, H. G. & Durian, D. J. 2010 Granular discharge and clogging for tilted hoppers. Granul. Matt. 12, 579585.
Staron, L., Lagrée, P.-Y. & Popinet, S. 2012 The granular silo as a continuum plastic flow: The hour-glass versus the clepsydra. Phys. Fluids 24, 103301.
Staron, L., Lagrée, P.-Y. & Popinet, S. 2014 Continuum simulation of the discharge of the granular silo, a validation test for the 𝜇(I) visco-plastic flow law. Eur. Phys. J. E 37 (1), 5.
Tighe, B. P. & Sperl, M. 2007 Pressure and motion of dry sand: translation of Hagen’s paper from 1852. Granul. Matt. 9, 141144.
Zhou, Y., Ruyer, P. & Aussillous, P. 2015 Discharge flow of a bidisperse granular media from a silo: discrete particle simulations. Phys. Rev. E 92, 062204.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Zhou et al. supplementary material
Zhou et al. supplementary material 1

 Unknown (3 KB)
3 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed