Skip to main content

Explosive fragmentation of liquid shells

  • A. Vledouts (a1), J. Quinard (a1), N. Vandenberghe (a1) and E. Villermaux (a2)

The forced radial expansion of a spherical liquid shell by an exothermic chemical reaction is a prototypical configuration for the explosion of cohesive materials in three dimensions. The shell is formed by the capillary pinch off of a thin liquid annular jet surrounding a jet of reactive gaseous mixture at ambient pressure. The encapsulated gas in the resulting liquid bubble is a mixture of hydrogen and oxygen in controlled relative proportions, which is ignited by a laser plasma aimed at the centre of the bubble. The strongly exothermic combustion of the mixture induces the expansion of the hot burnt gas, pushing the shell radially outwards in a violently accelerated motion. That motion triggers the instability of the shell, developing thickness modulations ultimately piercing it in a number of places. The capillary retraction of the holes concentrates the liquid constituting the shell into a web of ligaments, whose breakup leads to stable drops. We offer a comprehensive description of the overall process, from the kinematics of the shell initial expansion, to the final drop size distribution as a function of the composition of the gas mixture, the initial shell radius and thickness.

Corresponding author
Email address for correspondence:
Hide All
Bradley, D., Sheppard, C. G. W., Suardjaja, I. M. & Wooley, R. 2004 Fundamentals of high-energy spark ignition with lasers. Combust. Flame 138, 5577.
Bremond, N. & Villermaux, E. 2005 Bursting thin liquid films. J. Fluid Mech. 524, 121130.
Bremond, N. & Villermaux, E. 2006 Atomization by jet impact. J. Fluid Mech. 549, 273306.
Buff, F. P., Lowett, R. A. & Stillinger, F. H. Jr 1965 Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15 (15), 621623.
Burrows, A. 2000 Supernovae explosions in the universe. Nature 403, 727733.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.
Duplat, J. & Villermaux, E. 2015 Luminescence from collapsing centimeter bubbles expanded by chemical reaction. Phys. Rev. Lett. 115, 094501.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
Frost, D. L. 1988 Dynamics of explosive boiling of a droplet. Phys. Fluids 31 (9), 25542561.
Frost, D. L., Ornthanalai, C., Zarei, Z., Tanguay, V. & Zhang, F. 2007 Particle momentum effects from the detonation of heterogeneous explosives. J. Appl. Phys. 101, 113529.
Grady, D. E. 1982 Local inertial effects in dynamic fragmentation. J. Appl. Phys. 53, 322325.
Grady, D. E. 2007 Fragmentation of Rings and Shells: The Legacy of N. F. Mott. Springer.
Hassett, M. O., Fischer, M. W. F., Sugawara, Z. T., Stolze-Rybczynski, J. & Money, N. P. 2013 Splash and grab: biomechanics of peridiole ejection and function of the funicular cord in bird’s nest fungi. Fungal Biol. 117, 708714.
Ingold, C. T. 1933 Spore discharge in the ascomycetes. New Physiologist 3, 175196.
Ingold, C. T. 1971 Fungal Spores: Their Liberation and Dispersal. Clarendon.
Kedrinskii, V. K. 2005 Hydrodynamics of Explosions. Springer.
Kedrinskii, V. K. 2009 Hydrodynamic aspects of explosive eruptions of volcanoes: simulation problems. Shock Waves 18, 451464.
Keller, J. B. & Kolodner, I. 1954 Instability of liquid surfaces and the formation of drops. J. Appl. Phys. 25, 918921.
Kendall, J. M. 1986 Experiments on annular liquid jet instability and on the formation of liquid shells. Phys. Fluids 29, 20862094.
Krichevsky, O. & Stavans, J. 1994 Surfactant–polymer interactions in freely suspended lyotropic films. Phys. Rev. Lett. 73, 696699.
Landau, L. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.
Leblanc, L., Manoubi, M., Dennis, K., Liang, Z. & Radulescu, M. I. 2013 Dynamics of unconfined spherical flames: influence of buoyancy. Phys. Fluids 25, 091106.
Lewis, B. & von Elbe, G. 1961 Combustion, Flames and Explosions of Gases. Academic.
Lhuissier, H. & Villermaux, E. 2012 Crumpled water bells. J. Fluid Mech. 693, 508540.
Lhuissier, H. & Villermaux, E. 2013 ‘Effervescent’ atomization in two dimensions. J. Fluid Mech. 714, 361392.
Lide, D. R. 2004 CRC Handbook of Chemistry and Physics. CRC Press.
Marangoni, C. & Stefanelli, P. 1873 Monografia delle bolle liquide. Nuovo Cimento 9 (1), 236256.
Morley, C.2005 Gaseq (
Mott, N. F. 1947 Fragmentation of shell cases. Proc. R. Soc. Lond. A 189, 300308.
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.
Rayleigh, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29, 7197.
Rayleigh, L. 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.
von Rittinger, P. R. 1867 Lehrbuch der Aufbereitungskunde: in ihrer neuesten Entwicklung und Ausbildung systematisch dargestellt. Ernst und Korn.
Sedov, L. I. 1946 Le mouvement d’air en cas d’une forte explosion. C. R. Acad. Sci. URSS 52, 1720.
Senior, D. A. 1961 Burning velocities of hydrogen-air and hydrogen-oxygen mixtures: Determination by burner method with schlieren photography. Combust. Flame 5, 710.
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques. Springer.
Spiglanin, T. A., McIlroy, A., Fournier, E. W., Cohen, R. B. & Syage, J. A. 1995 Time-resolved imaging of flame kernels: laser spark ignition of H /O /Ar mixtures. Combust. Flame 102, 310328.
Srivastava, D., Weinrotter, M., Iskra, K., Agarwal, A. & Wintner, E. 2009 Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb. Int. J. Hydrog. Energy 34, 24752482.
Stebnovskii, S. V. 1982 Development of initial perturbations of the external boundary of an expanding gas–liquid ring. J. Appl. Mech. Tech. Phys. 23 (5), 633637.
Strehlow, R. A., Luckritz, R. T., Adamczyk, A. A. & Shimpi, S. A. 1979 The blast wave generated by spherical flames. Combust. Flame 35, 297310.
Sultanov, F. M. & Yarin, A. L. 1990 Droplet size distribution in a percolation model for explosive dispersal. J. Appl. Mech. Tech. Phys. 31 (5), 708713.
Takeno, T. 1985 Pressure distribution in flame propagating in a soap bubble. Combust. Flame 62, 9599.
Taylor, G. I. 1946 The air wave surrounding an expanding sphere. Proc. R. Soc. Lond. A 186, 273292.
Taylor, G. I. 1950 The formation of a blast wave by a very intense explosion. ii. The atomic explosion of 1945. Proc. R. Soc. Lond. A 201, 175186.
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. iii. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.
Zeldovich, Y. B., Barenblatt, G. I., Librovich, V. B. & Makhviladze, G. M. 1985 The Mathematical Theory of Combustion and Explosions. Consultants Bureau.
Zeldovich, Y. B. & Frank-Kamenetskii, D. A. 1938 On the theory of uniform flame propagation. Dokl. Akad. Nauk SSSR 19, 693798.
Zeldovich, Y. B. & Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.
Zhang, H. & Ravi-Chandar, K. 2007 On the dynamics of necking and fragmentation – I. Real-time and post-mortem observations in Al 6061-O. Intl J. Fract. 142 (3–4), 183217.
Zhang, H. & Ravi-Chandar, K. 2008 On the dynamics of necking and fragmentation – II. Effect of material properties, geometrical constraints and absolute size. Intl J. Fract. 150 (1–2), 336.
Zhao, H., Liu, H. F., Xu, J. L. & Li, W. F. 2011 Experimental study of drop size distribution in the bag breakup regime. Ind. Engng Chem. Res. 50 (16), 97679773.
Zitoun, R. & Deshaies, B. 1997 Burning velocities of rich H /O flames under cryogenic conditions. Combust. Flame 109, 427435.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed