Skip to main content Accessibility help
×
Home

Extended kinetic theory for granular flow over and within an inclined erodible bed

  • Diego Berzi (a1), James T. Jenkins (a2) and Patrick Richard (a3)

Abstract

We employ kinetic theory, extended to incorporate the influence of velocity correlations, friction and particle stiffness, and a model for rate-independent, elastic components of the stresses at volume fractions larger than a critical value, in an attempt to reproduce the results of discrete-element numerical simulations of steady, fully developed, dissipative, collisional shearing flows over and within inclined, erodible, fragile beds. The flows take place between vertical, frictional sidewalls at different separations with sufficient total particle flux so that differently inclined, erodible beds result. Numerical solutions of the spanwise-averaged differential equations of the theory and the associated boundary conditions are seen to be capable of reproducing profiles of stresses, solid volume fraction, average velocity and the strength of the particle velocity fluctuations, both in the rapid collisional flow above the bed and in the slower creeping flow within the bed. The indication is that extended kinetic theory has the unique ability to faithfully describe steady, inhomogeneous, granular shearing flows, ranging from dilute to extremely dense, using balances of momentum and energy and employing boundary conditions that are associated with the balances, with a small number of physically determined, microscopic parameters.

Copyright

Corresponding author

Email address for correspondence: diego.berzi@polimi.it

References

Hide All
Alam, M. & Luding, S. 2003 First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids 15, 22982312.
Berzi, D. 2014 Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mech. 225 (8), 21912198.
Berzi, D. & Jenkins, J. T. 2015 Steady shearing flows of deformable, inelastic spheres. Soft Matt. 11 (24), 47994808.
Berzi, D. & Jenkins, J. T. 2018 Fluidity, anisotropy, and velocity correlations in frictionless, collisional grain flows. Phys. Rev. Fluids 3, 094303.
Berzi, D., Jenkins, J. T. & Richard, P. 2019 Erodible, granular beds are fragile. Soft Matt. 15, 71737178.
Berzi, D. & Vescovi, D. 2015 Different singularities in the functions of extended kinetic theory at the origin of the yield stress in granular flows. Phys. Fluids 27 (1), 013302.
Bharathraj, S. & Kumaran, V. 2018 Effect of particle stiffness on contact dynamics and rheology in a dense granular flow. Phys. Rev. E 97, 012902.
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. 2011 Jamming by shear. Nature 480 (7377), 355358.
Carnahan, N. F. & Starling, K. E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51 (2), 635636.
Chapman, S., Cowling, T. G. & Burnett, D. 1990 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.
Chialvo, S., Sun, J. & Sundaresan, S. 2012 Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85 (2), 021305.
Crassous, J., Metayer, J.-F., Richard, P. & Laroche, C. 2008 Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. 2008, P03009.
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.
Foerster, S. F., Louge, M. Y., Chang, H. & Allia, K. 1994 Measurements of the collision properties of small spheres. Phys. Fluids 6 (3), 11081115.
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.
Garzó, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59 (5), 58955911.
GdR-Midi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.
Gollin, D., Berzi, D. & Bowman, E. T. 2017 Extended kinetic theory applied to inclined granular flows: role of boundaries. Granul. Matt. 19, 56.
Haff, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401430.
Henann, D. L. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110 (17), 67306735.
Jenkins, J. T. 1992 Boundary conditions for rapid granular flow: flat, frictional walls. J. Appl. Mech. 59 (1), 120.
Jenkins, J. T. 1994 Rapid granular flow down inclines. Appl. Mech. Rev. 47, S240–244.
Jenkins, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18 (10), 103307.
Jenkins, J. T. 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10 (1), 4752.
Jenkins, J. T. & Askari, E. 1991 Boundary conditions for rapid granular flows: phase interfaces. J. Fluid Mech. 223, 497508.
Jenkins, J. T. & Berzi, D. 2010 Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matt. 12 (2), 151158.
Jenkins, J. T. & Hanes, D. M. 1993 The balance of momentum and energy at an interface and freely flying grains in a rapid granular flow between colliding. Phys. Fluids A 5, 781783.
Jenkins, J. T. & Louge, M. Y. 1997 On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall. Phys. Fluids 9 (10), 2835.
Jenkins, J. T. & Richman, M. W. 1985 Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28 (12), 3485.
Jenkins, J. T. & Richman, M. W. 1986 Boundary conditions for plane flows of smooth, nearly elastic, circular disks. J. Fluid Mech. 171, 5369.
Jenkins, J. T. & Richman, M. W. 1988 Plane simple shear of smooth inelastic circular disks: the anisotropy of the second moment in the dilute and dense limits. J. Fluid Mech. 192, 313328.
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187202.
Jenkins, J. T. & Zhang, C. 2002 Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14 (3), 12281235.
Jop, P. 2015 Rheological properties of dense granular flows. Comptes Rendus Physique 16 (1), 6272.
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of side walls for granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11, 17446848.
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108 (17), 178301.
Komatsu, T., Inagaki, S., Nakagawa, N. & Nasuno, S. 2001 Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86 (9), 17571760.
Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79 (2), 021306.
Kremer, G. M., Santos, A. & Garzó, V. 2014 Transport coefficients of a granular gas of inelastic rough hard spheres. Phys. Rev. E 90, 116.
Kumaran, V. 2009 Dynamics of dense sheared granular flows. Part II. The relative velocity distributions. J. Fluid Mech. 632, 145198.
Larcher, M. & Jenkins, J. T. 2013 Segregation and mixture profiles in dense, inclined flows of two types of spheres. Phys. Fluids 25 (11), 113301.
Louge, M. Y. 1994 Computer simulations of rapid granular flows of spheres interacting with a flat, frictional boundary. Phys. Fluids 6 (7), 22532269.
Lun, C. K. K. 1991 Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539559.
Lun, C. K. K. & Bent, A. A. 1994 Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech. 258, 335353.
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223256.
Mitarai, N. & Nakanishi, H. 2005 Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow. Phys. Rev. Lett. 94 (12), 128001.
Mitarai, N. & Nakanishi, H. 2007 Velocity correlations in dense granular shear flows: effects on energy dissipation and normal stress. Phys. Rev. E 75 (3), 031305.
Oyama, N., Mizuno, H. & Saitoh, K. 2019 Avalanche interpretation of the power-law energy spectrum in three-dimensional dense granular flow. Phys. Rev. Lett. 122, 188004.
Pasini, J. M. & Jenkins, J. T. 2005 Aeolian transport with collisional suspension. Phil. Trans. Ser. A Math. Phys. Engng Sci. 363 (1832), 16251646.
Pouliquen, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.
Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M. & Delannay, R. 2008 Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101 (24), 248002.
Richman, M. W. 1988 Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75 (1–4), 227240.
Saha, S. & Alam, M. 2016 Normal stress differences, their origin and constitutive relations for a sheared granular fluid. J. Fluid Mech. 795, 549580.
Silbert, L. E. 2010 Jamming of frictional spheres and random loose packing. Soft Matt. 6 (13), 2918.
Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T. C., D., L. & Plimpton, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302.
Sun, J. & Sundaresan, S. 2011 A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech. 682, 590616.
Taberlet, N., Richard, P., Henry, E. & Delannay, R. 2004 The growth of a super stable heap: an experimental and numerical study. Europhys. Lett. 68 (4), 515521.
Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J. M., Jenkins, J. T. & Delannay, R. 2003 Superstable granular heap in a thin channel. Phys. Rev. Lett. 91, 264301.
Torquato, S. 1995 Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51 (4), 31703182.
Vescovi, D., Berzi, D., Richard, P. & Brodu, N. 2014 Plane shear flows of frictionless spheres: kinetic theory and 3D soft-sphere discrete element method simulations. Phys. Fluids 26 (5), 053305.
Zhang, Q. & Kamrin, K. 2017 Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Extended kinetic theory for granular flow over and within an inclined erodible bed

  • Diego Berzi (a1), James T. Jenkins (a2) and Patrick Richard (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed