Skip to main content
×
×
Home

Fano resonances in acoustics

  • STEFAN HEIN (a1), WERNER KOCH (a1) and LOTHAR NANNEN (a2)
Abstract

In contrast to completely open systems, laterally confined domains can sustain localized, truly trapped modes with nominally zero radiation loss. These discrete resonant modes cannot be excited linearly by the continuous propagating duct modes due to symmetry constraints. If the symmetry of the geometry is broken the trapped modes become highly localized quasi-trapped modes which can interfere with the propagating duct modes. The resulting narrowband Fano resonances with resonance and antiresonance features are a generic phenomenon in all scattering problems with multiple resonant pathways. This paper deals with the classical scattering of acoustic waves by various obstacles such as hard-walled single and multiple circular cylinders or rectangular and wedge-like screens in a two-dimensional duct without mean flow. The transmission and reflection coefficients as well as the (complex) resonances are computed numerically by means of the finite-element method in conjunction with two different absorbing boundary conditions, namely the complex scaling method and the Hardy space method. The results exhibit the typical asymmetric Fano line shapes near the trapped-mode resonances if the symmetry of the geometry is broken.

Copyright
Corresponding author
Email address for correspondence: werner.koch@dlr.de
References
Hide All
Aguilar, J. & Combes, J. M. 1971 A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22, 269279.
Al-Naib, I. A. I., Jansen, C. & Koch, M. 2009 High Q-factor metasurfaces based on miniaturized asymmetric single split resonators. Appl. Phys. Lett. 94, 153505-1–153505-4.
Aly, K. & Ziada, S. 2010 Numerical simulation of internal cavities acoustic trapped modes with mean flow. In ASME 3rd Joint US–European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels and Minichannels – 1–5 August 2010, Montreal, Canada. ASME.
Aslanyan, A., Parnovski, L. & Vassiliev, D. 2000 Complex resonances in acoustic waveguides. Q. J. Mech. Appl. Math. 53, 429447.
Baslev, E. & Combes, J. M. 1971 Spectral properties of many body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys. 22, 280294.
Bérenger, J. P. 1994 A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185200.
Bindel, D. S. & Govindjee, S. 2005 Elastic PMLs for resonator anchor loss simulation. Intl J. Numer. Meth. Engng 64, 789818.
Blevins, R. D. 1986 Acoustic modes of heat exchanger tube bundles. J. Sound Vib. 109 (3), 1931.
Borthwick, D. 2007 Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhäuser.
Boström, A. 1980 Transmission and reflection of acoustic waves by an obstacle in a waveguide. Wave Motion 2, 167184.
Callan, M., Linton, C. M. & Evans, D. V. 1991 Trapped modes in two-dimensional waveguides. J. Fluid Mech. 229, 5164.
Cattapan, G. & Lotti, P. 2007 Fano resonances in stubbed quantum waveguides with impurities. Eur. Phys. J. B 60, 5160.
Chew, W. C. & Weedon, W. H. 1994 A 3-D perfectly matched medium from modified Maxwell's equation with stretched coordinates. Microw. Opt. Technol. Lett. 7 (13), 599604.
Cobelli, P. J., Pagneux, V., Maurel, A. & Petitjeans, P. 2009 Experimental observation of trapped modes in a water wave channel. EPL 88, 20006-p1–20006-p6.
Collino, F. & Monk, P. 1998 The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (6), 20612090.
Davies, E. B. & Parnovski, L. 1998 Trapped modes in acoustic waveguides. Q. J. Mech. Appl. Math 51, 477492.
Duan, Y., Koch, W., Linton, C. M. & McIver, M. 2007 Complex resonances and trapped modes in ducted domains. J. Fluid Mech. 571, 119147.
El Boudouti, E. H., Mrabti, T., Al-Wahsh, H., Djafari-Rouhani, B., Akjouj, A. & Dobrzynski, L. 2008 Transmission gaps and Fano resonances in an acoustic waveguide: analytical model. J. Phys. Condens. Matter. 20, 255212-1–255212-10.
Evans, D. V. 1992 Trapped acoustic modes. IMA J. Appl. Math. 49 (1), 4560.
Evans, D. V., Levitin, M. & Vassiliev, D. 1994 Existence theorems for trapped modes. J. Fluid Mech. 261, 2131.
Evans, D. V. & Linton, C. M. 1991 Trapped modes in open channels. J. Fluid Mech. 225, 153175.
Evans, D. V., Linton, C. M. & Ursell, F. 1993 Trapped mode frequencies embedded in the continuous spectrum. Q. J. Mech. Appl. Math. 46, 253274.
Evans, D. V. & Porter, R. 1997 Trapped modes about multiple cylinders in a channel. J. Fluid Mech. 339, 331356.
Evans, D. V. & Porter, R. 1998 Trapped modes embedded in the continuous spectrum. Q. J. Mech. Appl. Math. 52, 263274.
Evans, D. V. & Porter, R. 1999 Trapping and near-trapping by arrays of cylinders in waves. J. Engng Math. 35, 149179.
Fano, U. 1935 Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco. Nuovo Cimento 12, 154161.
Fano, U. 1961 Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124 (6), 18661878.
Fano, U., Pupillo, G., Zannoni, A. & Clark, C. W. 2005 On the absorption spectrum of noble gases at the arc spectrum limit. J. Res. Natl. Inst. Stand. Technol. 110, 583587.
Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. 2007 Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401-1–147401-4.
Fuller, C. R. & Bies, D. A. 1978 A reactive acoustic attenuator. J. Sound Vib. 56, 4559.
Harari, I., Patlashenko, I. & Givoli, D. 1998 Dirichlet-to-Neumann maps for unbounded wave guides. J. Comp. Phys. 143, 200223.
Hein, S., Hohage, T. & Koch, W. 2004 On resonances in open systems. J. Fluid Mech. 506, 255284.
Hein, S., Hohage, T., Koch, W. & Schöberl, J. 2007 Acoustic resonances in a high lift configuration. J. Fluid Mech. 582, 179202.
Hein, S. & Koch, W. 2008 Acoustic resonances and trapped modes in pipes and tunnels. J. Fluid Mech. 605, 401428.
Hislop, P. D. & Sigal, I. M. 1996 Introduction to Spectral Theory. Springer.
Hohage, T. & Nannen, L. 2009 Hardy space infinite elements for scattering and resonance problems. SIAM J. Numer. Anal. 47 (2), 972996.
Hu, F. Q. 2004 Absorbing boundary conditions. Intl J. Comput. Fluid Dyn. 18 (6), 513522.
Joe, Y. S., Satanin, M. & Kim, C. S. 2006 Classical analogy of Fano resonances. Phys. Scr. 74, 259266.
Kim, S. & Pasciak, J. E. 2009 The computation of resonances in open systems using a perfectly matched layer. Math. Comput. 78, 13751398.
Kirby, R. 2008 Modelling sound propagation in acoustic waveguides using a hybrid numerical method. J. Acoust. Soc. Am. 124 (4), 19301940.
Koch, W. 2009 Acoustic resonances and trapped modes in annular plate cascades. J. Fluid Mech. 628, 155180.
Ladrón de Guevara, M. L., Claro, F. & Orellana, P. A. 2003 Ghost Fano resonance in a double quantum dot molecule attached to leads. Phys. Rev. B 67, 195335-1–195335-6.
Li, Y. & Mei, C. C. 2006 Subharmonic resonance of a trapped wave near a vertical cylinder in a channel. J. Fluid Mech. 561, 391416.
Linton, C. M. 1995 Acoustic scattering by a sphere in a circular cylindrical waveguide. Q. J. Mech. Appl. Math. 48, 211235.
Linton, C. M. & Evans, D. V. 1992 The radiation and scattering of surface waves by a vertical circular cylinder in a channel. Phil. Trans. R. Soc. Lond. A 338, 325357.
Linton, C. M. & McIver, M. 2002 Periodic structures in waveguides. Proc. R. Soc. Lond. A 458, 30033021.
Linton, C. M., McIver, M., McIver, P., Ratcliffe, K. & Zhang, J. 2002 Trapped modes for off-centre structures in guides. Wave Motion 36, 6785.
McIver, M. & Linton, C. M. 1995 On the non-existence of trapped modes in acoustic waveguides. Q. J. Mech. Appl. Math. 48, 543555.
Mingaleev, S. F., Miroshnichenko, A. E. & Kivshar, Y. S. 2008 Coupled-resonator-induced reflection in photonic-crystal waveguides. Opt. Express 16, 1164711659.
Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. 2010 Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 22572298.
Moiseyev, N. 1998 Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phy. Rep. 302, 211293.
Nannen, L. 2008 Hardy-Raum Methoden zur numerischen Lösung von Streu- und Resonanzproblemen auf unbeschränkten Gebieten. PhD thesis, Georg-August Universität Göttingen, Der Andere Verlag, Tönning.
Nannen, L. & Schädle, A. 2010 Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities. arXiv:math.NA/1025v1.
Papasimakis, N., Fedotov, V. A. & Zheludev, N. I. 2008 Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903-1–253903-4.
Parker, R. 1978 Acoustic resonances in passages containing banks of heat exchanger tubes. J. Sound Vib. 57, 245260.
Parker, R. 1984 Acoustic resonances and blade vibration in axial flow compressors. J. Sound Vib. 92, 529539.
Parker, R. & Stoneman, S. A. T. 1989 The excitation and consequences of acoustic resonances in enclosed fluid flow around solid bodies. Proc. Inst. Mech. Engng 203, 919.
Pierce, A. D. 1981 Acoustics. McGraw Hill.
Porter, R. 2007 Trapped modes in thin elastic plates. Wave Motion 45, 315.
Porter, R. & Evans, D. V. 1999 Rayleigh–Bloch surface waves along periodic gratings and their connection with trapped modes in waveguides. J. Fluid Mech. 386, 233258.
Porter, R. & Evans, D. V. 2002 Trapped modes about tube bundles in waveguides. In IUTAM Symposium on Diffraction in Fluid Mechanics and Elasticity (ed. Martin, P. A., Abrahams, I. D. & Simon, M. J.), pp. 8794. Kluwer.
Retzler, C. H. 2001 Trapped modes: an experimental investigation. Appl. Ocean Res. 23 (4), 249250.
Rim, M. & Kim, Y.-H. 2000 Narrowband noise attenuation characteristics of in-duct acoustic screens. J. Sound Vib. 234 (5), 737759.
Schöberl, J. 1997 NETGEN: an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 4152.
Shao, Z.-A., Porod, W. & Lent, C. S. 1994 Transmission resonances and zeros in quantum waveguide systems with attached resonators. Phys. Rev. B 49 (11), 74537465.
Simon, B. 1973 The theory of resonances for dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math. 97, 247274.
Utsunomiya, T. & Eatock Taylor, R. 1999 Trapped modes around a row of circular cylinders in a channel. J. Fluid Mech. 386, 259279.
Voo, K.-K. & Chu, C. S. 2006 Localized states in continuum in low-dimensional systems. Phys. Rev. B 74, 155306-1–155306-7.
Zworski, M. 1999 Resonances in physics and geometry. Not. AMS 46 (3), 319328.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed