Skip to main content Accessibility help

Fast transient microjets induced by hemispherical cavitation bubbles

  • Silvestre Roberto Gonzalez Avila (a1) (a2), Chaolong Song (a1) and Claus-Dieter Ohl (a1)


We report on a novel method to generate fast transient microjets and study their characteristics. The simple device consists of two electrodes on a substrate with a hole in between. The side of the substrate with the electrodes is submerged in a liquid. Two separate microjets exit through the tapered hole after an electrical discharge is induced between the electrodes. They are formed during the expansion and collapse of a single cavitation bubble. The cavitation bubble dynamics as well as the jets were studied with high-speed photography at up to 500 000 f.p.s. With increasing jet velocity they become unstable and spray formation is observed. The jet created during expansion (first jet) is in most cases slower than the jet created during bubble collapse, which can reach up to $400~\text{m}~\text{s}^{-1}$ . The spray exiting the orifice is at least in part due to the presence of cavitation in the microchannel as observed by high-speed recording. The effect of viscosity was tested using silicone oil of 10, 50 and 100 cSt. Interestingly, for all liquids the transition from a stable to an unstable jet occurs at $We\sim 4600$ . We demonstrate that these microjets can penetrate into soft material; thus they can be potentially used as a needleless drug delivery device.


Corresponding author

Email address for correspondence:


Hide All
Ahearne, M., Yang, Y., El Haj, A. J., Then, K. Y. & Liu, K. K. 2005 Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interf. 2, 455463.
Alexander, R. M. 2006 Principles of Animal Locomotion. Princeton University Press.
Ando, K., Liu, A. Q. & Ohl, C. D. 2012 Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett. 109, 044501.
Arora, A., Hakim, I., Baxter, J., Rathnasingham, R., Srinivasan, R., Fletcher, D. A. & Mitragotri, S. 2007 Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc. Natl Acad. Sci. USA 104, 42554260.
Biewener, A. A. 2003 Animal Locomotion. Oxford University Press.
Bogy, D. B. 1979 Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207228.
Brennen, C. E. 1995 Cavitation and Bubble Dynamics, Oxford Engineering Science Series, vol. 44, p. 282. Oxford University Press.
Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F. & Schneider, T.1995 Experimental study of cavitation in the nozzle hole of diesel injectors using transparent nozzles. SAE Tech. Paper. Paper #95020, International Congress and Exposition Detroit, Michigan, February 27–March 2, 1995, doi:10.4271/950290.
Dijkink, R. & Ohl, C. D. 2008 Laser-induced cavitation based micropump. Lab on a Chip 8, 16761681.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
Fletcher, D. A. & Palanker, D. V. 2001 Pulsed liquid microjet for microsurgery. Appl. Phys. Lett. 78, 19331935.
Fletcher, D. A., Palanker, D. V., Huie, P., Miller, J., Marmor, M. F. & Blumenkranz, M. S. 2002 Intravascular drug delivery with a pulsed liquid microjet. Arch. Ophthalmol. 120, 12061208.
Ganippa, L. C., Bark, G., Andersson, S. & Chomiak, J. Cavitation: a contributory factor in the transition from symmetric to asymmetric jets in cross-flow nozzles. Exp. Fluids 36 (4), 627634.
Giannadakis, E., Gavaises, M. & Arcoumanis, C. 2008 Modelling of cavitation in diesel injector nozzles. J. Fluid Mech. 616, 153193.
Gonzalez-Avila, S. R., Khoo, B. C., Klaseboer, E. & Ohl, C.-D. 2011 Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 682, 241260.
Grant, R. P. & Middleman, S. 1966 Newtonian jet stability. AIChE J. 2, 669678.
Han, T. H., Hah, J. M. & Yoh, J. J. 2011 Drug injection into fat tissue with a laser based microjet injector. J. Appl. Phys. 109, 093105.
van Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M. P. & Lohse, D. 2010 Breakup of diminutive Rayleigh jets. Phys. Fluids 22 (12), 122003.
Jagadeesh, G., Prakash, G. D., Rakesh, S. G., Allam, U. S., Krishna, M. G., Eswarappa, S. M. & Chakravortty, D. 2011 Needleless vaccine delivery using micro-shock waves. Clin. Vaccine Immunology 18, 539545.
Joseph, D. D. 1998 Cavitation and the state of stress in a flowing liquid. J. Fluid Mech. 366, 367378.
Karri, B., Gonzalez-A, S. R. G., Loke, Y. C., O’Shea, S. J., Klaseboer, E., Khoo, B. C. & Ohl, C. D. 2012a High-speed jetting and spray formation from bubble collapse. Phys. Rev. E 85, 015303.
Karri, B., Ohl, S.-W., Klaseboer, E., Ohl, C.-D. & Khoo, B. C. 2012b Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole. Phys. Rev. E 86, 036309.
Lew, K. S. F., Klaseboer, E. & Khoo, B. C. 2007 A collapsing bubble-induced micropump: An experimental study. Sensors Actuators A 133, 161172.
Lide, D. R. 2004 Handbook of Chemistry and Physics. CRC Press.
Lin, S. P. & Reitz, R. D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.
Mitragotri, S. 2006 Innovation – Current status and future prospects of needle-free liquid jet injectors. Nat. Rev. Drug Discov. 5, 543548.
Nayar, V. T., Weiland, J. D., Nelson, C. S. & Hodge, A. M. 2012 Elastic and viscoelastic characterization of agar. J. Mech. Behavior Biomed. Mater. 7, 6068.
Pailler-Mattei, C., Bec, S. & Zahouani, H. 2008 In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Engng Phys. 30, 599606.
Payri, F., Bermudez, V., Payri, R. & Salvador, F. J. 2004 The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel 83, 419431.
Reitz, R. D. & Bracco, F. V. 1982 Mechanism of atomization of a liquid jet. Phys. Fluids 25 (622), 17301742.
Reitz, R. D. & Bracco, F. V. 1986 Mechanisms of breakup of round liquid jets. In The Encyclopedia of Fluid Mechanics. Gulf Publishing Company.
Schramm, J. & Mitragotri, S. 2002 Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration. Pharmaceut. Res. 19, 16731679.
Schramm-Baxter, J. & Mitragotri, S. 2004 Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. J. Control. Release 97, 527535.
Stachowiak, J. C., Li, T. H., Arora, A., Mitragotri, S. & Fletcher, D. A. 2009 Dynamic control of needle-free jet injection. J. Control. Release 135, 104112.
Stachowiak, J. C., Von Muhlen, M. G., Li, T. H., Jalilian, L., Parekh, S. H. & Fletcher, D. A. 2007 Piezoelectric control of needle-free transdermal drug delivery. J. Control. Release 124, 8897.
Tagawa, Y., Oudalov, N., El Ghalbzouri, A., Sun, C. & Lohse, D. 2013 Needle-free injection into skin and soft matter with highly focused microjets. Lab on a Chip 13, 13571363.
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., Van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.
Tellini, B. & Giannetti, R.1998 Current measurement in electrical discharges in air gaps for conducted noise estimation. Instrumentation and Measurement Technology Conference, 1998. IMTC/98. Conference Proceedings. IEEE.
Van Ouwerkerk, H. J. 1971 The rapid growth of a vapour bubble at a liquid–solid interface. Intl J. Heat Mass Transfer 14, 14151431.
Van Ouwerkerk, H. J. 1972 Hemispherical bubble growth in a binary mixture. Chem. Engng Sci. 27, 19571967.
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Noojin, G. D., Rockwell, B. A. & Birngruber, R. 1999 Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271280.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed