Skip to main content
×
×
Home

Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets

  • Christophe Bogey (a1) and Romain Gojon (a1) (a2)
Abstract

The aeroacoustic feedback loop establishing in a supersonic round jet impinging on a flat plate normally has been investigated by combining compressible large-eddy simulations and modelling of that loop. At the exit of a straight pipe nozzle of radius  $r_{0}$ , the jet is ideally expanded, and has a Mach number of 1.5 and a Reynolds number of $6\times 10^{4}$ . Four distances between the nozzle exit and the flat plate, equal to $6r_{0}$ , $8r_{0}$ , $10r_{0}$ and $12r_{0}$ , have been considered. In this way, the variations of the convection velocity of the shear-layer turbulent structures according to the nozzle-to-plate distance are shown. In the spectra obtained inside and outside of the flow near the nozzle, several tones emerge at Strouhal numbers in agreement with measurements in the literature. At these frequencies, by applying Fourier decomposition to the pressure fields, hydrodynamic-acoustic standing waves containing a whole number of cells between the nozzle and the plate and axisymmetric or helical jet oscillations are found. The tone frequencies and the mode numbers inferred from the standing-wave patterns are in line with the classical feedback-loop model, in which the loop is closed by acoustic waves outside the jet. The axisymmetric or helical nature of the jet oscillations at the tone frequencies is also consistent with a wave analysis using a jet vortex-sheet model, providing the allowable frequency ranges for the upstream-propagating acoustic wave modes of the jet. In particular, the tones are located on the part of the dispersion relations of the modes where these waves have phase and group velocities close to the ambient speed of sound. Based on the observation of the pressure fields and on frequency–wavenumber spectra on the jet axis and in the shear layers, such waves are identified inside the present jets, for the first time to the best of our knowledge, for a supersonic jet flow. This study thus suggests that the feedback loop in ideally expanded impinging jets is completed by these waves.

Copyright
Corresponding author
Email address for correspondence: christophe.bogey@ec-lyon.fr
References
Hide All
Berland, J., Bogey, C., Marsden, O. & Bailly, C. 2007 High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys. 224 (2), 637662.
Berman, C. H. & Williams, J. E. 1970 Instability of a two-dimensional compressible jet. J. Fluid Mech. 42 (01), 151159.
Bogey, C.2017 Direct numerical simulation of a temporally-developing subsonic round jet and its sound field. AIAA Paper 2017-0925.
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.
Bogey, C. & Bailly, C. 2006 Large eddy simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids 18, 065101.
Bogey, C. & Bailly, C. 2009 Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. J. Fluid Mech. 627, 129160.
Bogey, C., de Cacqueray, N. & Bailly, C. 2009 A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (5), 14471465.
Bogey, C., de Cacqueray, N. & Bailly, C. 2011a Finite differences for coarse azimuthal discretization and for reduction of effective resolution near origin of cylindrical flow equations. J. Comput. Phys. 230 (4), 11341146.
Bogey, C. & Marsden, O. 2016 Simulations of initially highly disturbed jets with experiment-like exit boundary layers. AIAA J. 54 (2), 12992016.
Bogey, C., Marsden, O. & Bailly, C. 2011b Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers. Phys. Fluids 23, 035104.
Bogey, C., Marsden, O. & Bailly, C. 2012a Effects of moderate Reynolds numbers on subsonic round jets with highly disturbed nozzle-exit boundary layers. Phys. Fluids 24 (10), 105107.
Bogey, C., Marsden, O. & Bailly, C. 2012b Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105 . J. Fluid Mech. 701, 352385.
Brehm, C., Housman, J. A. & Kiris, C. C. 2016 Noise generation mechanisms for a supersonic jet impinging on an inclined plate. J. Fluid Mech. 797, 802850.
Brès, G. A., Khalaghi, Y., Ham, F. & Lele, S. K. 2011 Unstructured large eddy simulation technology for aeroacoustics of complex jet flows. In Proceedings of the Inter-Noise 2011 Conference, Institute of Noise Control Engineering, Japan & Acoustical Society of Japan.
Buchmann, N. A., Mitchell, D. M., Ingvorsen, K. M., Honnery, D. R. & Soria, J. 2011 High spatial resolution imaging of a supersonic underexpanded jet impinging on a flat plate. In Proc. 6th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, University of New South Wales, Canberra.
de Cacqueray, N., Bogey, C. & Bailly, C. 2011 Investigation of a high-Mach-number overexpanded jet using large-eddy simulation. AIAA J. 49 (10), 21712182.
Dauptain, A., Cuenot, B. & Gicquel, L. Y. M. 2010 Large eddy simulation of stable supersonic jet impinging on flat plate. AIAA J. 48 (10), 23252338.
Dauptain, A., Gicquel, L. Y. M. & Moreau, S. 2012 Large eddy simulation of supersonic impinging jets. AIAA J. 50 (7), 15601574.
Davis, T., Edstrand, A., Alvi, F., Cattafesta, L., Yorita, D. & Asai, K. 2015 Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements. Exp. Fluids 56 (5), 113.
Fauconnier, D., Bogey, C. & Dick, E. 2013 On the performance of relaxation filtering for large-eddy simulation. J. Turbul. 14 (1), 2249.
Gojon, R. & Bogey, C. 2017 Flow structure oscillations and tone production in underexpanded impinging round jets. AIAA J. 55 (6), 17921804; see also AIAA Paper 2015-2209.
Gojon, R., Bogey, C. & Marsden, O. 2016 Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation. J. Fluid Mech. 808, 90115.
Gutmark, E. & Ho, C.-M. 1983 Preferred modes and the spreading rates of jets. Phys. Fluids 26 (10), 29322938.
Henderson, B., Bridges, J. & Wernet, M. 2005 An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115137.
Henderson, B. & Powell, A. 1993 Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168 (2), 307326.
Hildebrand, N. & Nichols, J. W.2015 Simulation and stability analysis of a supersonic impinging jet at varying nozzle-to-wall distances. AIAA Paper 2015-2212.
Ho, C. M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.
Kim, S. L. & Park, S. O. 2005 Oscillatory behavior of supersonic impinging jet flows. Shock Waves 14 (4), 259272.
Kremer, F. & Bogey, C. 2015 Large-eddy simulation of turbulent channel flow using relaxation filtering: resolution requirement and Reynolds number effect. Comput. Fluids 17 (7), 1728.
Krothapalli, A. 1985 Discrete tones generated by an impinging underexpanded rectangular jet. AIAA J. 23 (12), 19101915.
Krothapalli, A., Rajkuperan, E., Alvi, F. & Lourenco, L. 1999 Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155181.
Kuo, C. Y. & Dowling, A. P. 1996 Oscillations of a moderately underexpanded choked jet impinging upon a flat plate. J. Fluid Mech. 315, 267291.
Lau, J. C., Morris, P. J. & Fisher, M. J. 1979 Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93 (1), 127.
Lepicovsky, J. & Ahuja, K. K. 1985 Experimental results on edge-tone oscillations in high-speed subsonic jets. AIAA J. 23 (10), 14631468.
Loh, C. Y.2005 Computation of tone noise from supersonic jet impinging on flat plates. NASA/CR-2005-213426, see also AIAA Paper 2005-0418.
Mack, L. M. 1990 On the inviscid acoustic-mode instability of supersonic shear flows. Theor. Comput. Fluid Dyn. 2 (2), 97123.
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.
Mitchell, D. M., Honnery, D. R. & Soria, J. 2012 The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. 15 (4), 333341.
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.
Nichols, J. W. & Lele, S. K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225241.
Nonomura, T., Goto, Y. & Fujii, K. 2011 Aeroacoustic waves generated from a supersonic jet impinging on an inclined flat plate. Intl J. Aeroacoust. 10 (4), 401426.
Norum, T. D. 1991 Supersonic rectangular jet impingement noise experiments. AIAA J. 29 (7), 10511057.
Nosseir, N. S. & Ho, C. M. 1982 Dynamics of an impinging jet. Part 2. The noise generation. J. Fluid Mech. 116, 379391.
Panda, J., Raman, G. & Zaman, K. B. M. Q.1997 Underexpanded screeching jets from circular, rectangular and elliptic nozzles. AIAA Paper 97-1623.
Powell, A. 1953 On edge tones and associated phenomena. Acta Acust. United Ac. 3, 233243.
Risborg, A. & Soria, J.2009 High-speed optical measurements of an underexpanded supersonic jet impinging on an inclined plate. In Proc. SPIE 7126, 28th International Congress on High-Speed Imaging and Photonics.
Rockwell, D. & Naudascher, E. 1978 Review-self-sustaining oscillations of flow past cavities. Trans. ASME J. Fluids Engng 100 (2), 152165.
Sabatini, R. & Bailly, C. 2014 Numerical algorithm for computing acoustic and vortical spatial instability waves. AIAA J. 53 (3), 692702.
Sakakibara, Y. & Iwamoto, J. 2002 Oscillation of impinging jet with generation of acoustic waves. Intl J. Aeroacoust. 1 (4), 385402.
Tam, C. K. W. & Ahuja, K. K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.
Tam, C. K. W. & Dong, Z. 1994 Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics. Theor. Comput. Fluid Dyn. 6, 303322.
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.
Tam, C. K. W. & Norum, T. D. 1992 Impingement tones of large aspect ratio supersonic rectangular jets. AIAA J. 30 (2), 304311.
Towne, A., Cavalieri, A. V. G, Jordan, P., Colonius, T., Jaunet, V., Schmidt, O. & Brès, G.2016 Trapped acoustic waves in the potential core of subsonic jets. AIAA Paper 2016-2809.
Umeda, Y., Maeda, H. & Ishii, R. 1987 Discrete tones generated by the impingement of a highspeed jet on a circular cylinder. Phys. Fluids 30 (8), 23802388.
Uzun, A., Kumar, R., Hussaini, M. Y. & Alvi, F. S. 2013 Simulation of tonal noise generation by supersonic impinging jets. AIAA J. 51 (7), 15931611.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 193 *
Loading metrics...

Abstract views

Total abstract views: 355 *
Loading metrics...

* Views captured on Cambridge Core between 22nd June 2017 - 17th August 2018. This data will be updated every 24 hours.