Skip to main content

Finite Reynolds number effect on the scaling range behaviour of turbulent longitudinal velocity structure functions

  • S. L. Tang (a1) (a2), R. A. Antonia (a3), L. Djenidi (a3), L. Danaila (a4) and Y. Zhou (a1) (a2)...

The effect of large-scale forcing on the second- and third-order longitudinal velocity structure functions, evaluated at the Taylor microscale $r=\unicode[STIX]{x1D706}$ , is assessed in various turbulent flows at small to moderate values of the Taylor microscale Reynolds number $R_{\unicode[STIX]{x1D706}}$ . It is found that the contribution of the large-scale terms to the scale by scale energy budget differs from flow to flow. For a fixed $R_{\unicode[STIX]{x1D706}}$ , this contribution is largest on the centreline of a fully developed channel flow but smallest for stationary forced periodic box turbulence. For decaying-type flows, the contribution lies between the previous two cases. Because of the difference in the large-scale term between flows, the third-order longitudinal velocity structure function at $r=\unicode[STIX]{x1D706}$ differs from flow to flow at small to moderate $R_{\unicode[STIX]{x1D706}}$ . The effect on the second-order velocity structure functions appears to be negligible. More importantly, the effect of $R_{\unicode[STIX]{x1D706}}$ on the scaling range exponent of the longitudinal velocity structure function is assessed using measurements of the streamwise velocity fluctuation $u$ , with $R_{\unicode[STIX]{x1D706}}$ in the range 500–1100, on the axis of a plane jet. It is found that the magnitude of the exponent increases as $R_{\unicode[STIX]{x1D706}}$ increases and the rate of increase depends on the order $n$ . The trend of published structure function data on the axes of an axisymmetric jet and a two-dimensional wake confirms this dependence. For a fixed $R_{\unicode[STIX]{x1D706}}$ , the exponent can vary from flow to flow and for a given flow, the larger $R_{\unicode[STIX]{x1D706}}$ is, the closer the exponent is to the value predicted by Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941a, pp. 299–303) (hereafter K41). The major conclusion is that the finite Reynolds number effect, which depends on the flow, needs to be properly accounted for before determining whether corrections to K41, arising from the intermittency of the energy dissipation rate, are needed. We further point out that it is imprudent, if not incorrect, to associate the finite Reynolds number effect with a consequence of the modified similarity hypothesis introduced by Kolmogorov (J. Fluid Mech., vol. 13, 1962, pp. 82–85) (K62); we contend that this association has misled the vast majority of post K62 investigations of the consequences of K62.

Corresponding author
Email address for correspondence:
Hide All
Anselmet F., Gagne Y., Hopfinger E. J. & Antonia R. A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 6389.
Antonia R. A. & Burattini P. 2006 Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175184.
Antonia R. A., Djenidi L. & Danaila L. 2014 Collapse of the turbulent dissipation range on kolmogorov scales. Phys. Fluids 26, 045105.
Antonia R. A. & Pearson B. R. 2000 Reynolds number dependence of velocity structure functions in a turbulent pipe flow. Flow Turbul. Combust. 64, 95117.
Antonia R. A., Pearson B. R. & Zhou T. 2000a Reynolds number dependence of second-order velocity structure functions. Phys. Fluids 12, 30003006.
Antonia R. A., Pearson B. R. & Zhou T. 2002a Reynolds number dependence of second-order velocity structure functions. Phys. Fluids 12, 30003006.
Antonia R. A., Satyaprakash B. R. & Chambers A. J. 1982a Reynolds number dependence of velocity structure functions in turbulent shear flows. Phys. Fluids 25, 2937.
Antonia R. A., Satyaprakash B. R. & Hussain A. K. M. F. 1982b Statistics of fine-scale velocity in turbulent plane and circular jets. J. Fluid Mech. 119, 5589.
Antonia R. A., Smalley R. J., Zhou T., Anselmet F. & Danaila L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.
Antonia R. A., Tang S. L., Djenidi L. & Danaila L. 2015 Boundedness of the velocity derivative skewness in various turbulent flows. J. Fluid Mech. 781, 727744.
Antonia R. A., Zhou T., Danaila L. & Anselmet F. 2000b Streamwise inhomogeneity of decaying grid turbulence. Phys. Fluids 12, 30863089.
Antonia R. A., Zhou T. & Romano G. P. 2002b Small-scale turbulence characteristics of two-dimensional bluff body wakes. J. Fluid Mech. 459, 6792.
Batchelor G. K. 1951 Pressure fluctuations in isotropic turbulence. Proc. Camb. Phil. Soc. 47, 533559.
Belin F., Maurer J., Tabeling P. & Willaime H. 1997 Velocity gradient distributions in fully developed turbulence: experimental study. Phys. Fluids 9, 38433850.
Benzi R., Ciliberto S., Tripiccione R., Baudet C., Massaioli F. & Succi S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, 2932.
Bos W. J. T., Chevillard L., Scott J. F. & Rubinstein R. 2012 Reynolds number effect on the velocity increment skewness in isotropic turbulence. Phys. Fluids 24, 015108.
Boschung J., Hennig F., Gauding M., Pitsch H. & Peters N. 2016 Generalised higher-order Kolmogorov scales. J. Fluid Mech. 794, 233251.
Burattini P., Antonia R. A. & Danaila L. 2005a Scale-by-scale energy budget on the axis of a turbulent round jet. J. Turbul. 6, N19.
Burattini P., Antonia R. A. & Danaila L. 2005b Similarity in the far field of a turbulent round jet. Phys. Fluids 17, 025101.
Cleve J., Greiner M., Pearson B. R. & Sreenivasan K. R. 2004 Intermittency exponent of the turbulent energy cascade. Phys. Rev. E 69, 066316.
Danaila L., Anselmet F. & Antonia R. A. 2002 An overview of the effect of large-scale inhomogeneities on small-scale turbulence. Phys. Fluids 14, 24752482.
Danaila L., Anselmet F., Zhou T. & Antonia R. A. 1999 A generalization of Yaglom’s equation which accounts for the large-scale forcing in heated decaying turbulence. J. Fluid Mech. 391, 359372.
Danaila L., Anselmet F., Zhou T. & Antonia R. A. 2001 Turbulent energy scale-budget equations in a fully developed channel flow. J. Fluid Mech. 430, 87109.
Danaila L., Antonia R. A. & Burattini P. 2004 Progress in studying small-scale turbulence using ‘exact’ two-point equations. New J. Phys. 6, 223.
Djenidi L. & Antonia R. A. 2015 A general self-preservation analysis for decaying homogenous isotropic turbulence. J. Fluid Mech. 773, 345365.
Frisch U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Frisch U., Sulem P. L. & Nelkin M. 1978 A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719736.
Fukayama D., Oyamada T., Nakano T., Gotoh T. & Yamamoto K. 2000 Longitudinal structure functions in decaying and forced turbulence. J. Phys. Soc. Japan 69, 701715.
Gotoh T., Fukayama D. & Nakano T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 10651081.
Gotoh T. & Nakano T. 2003 Role of pressure in turbulence. J. Stat. Phys. 113 (5), 855874.
Gotoh T. & Watanabe T. 2015 Power and nonpower laws of passive scalar moments convected by isotropic turbulence. Phys. Rev. Lett. 115 (11), 114502.
Hao Z., Zhou T., Zhou Y. & Mi J. 2008 Reynolds number dependence of the inertial range scaling of energy dissipation rate and enstrophy in a cylinder wake. Exp. Fluids 44, 279289.
Hearst R. J. & Lavoie P. 2014 Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech. 741, 567584.
Hill R. J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.
Hill R. J. & Wilczak J. M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247269.
Ishihara T., Morishita K., Yokokawa M., Uno A. & Kaneda Y. 2016 Energy spectrum in high-resolution direct numerical simulations of turbulence. Phys. Rev. Fluids 1 (8), 082403.
Kolmogorov A. N. 1941a Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.
Kolmogorov A. N. 1941b Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1921.
Kolmogorov A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.
Kurien S. & Sreenivasan K. R. 2000 Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence. Phys. Rev. E 62, 22062212.
Lindborg E. 1999 Correction to the four-fifths law due to variations of the dissipation. Phys. Fluids 11, 510.
L’vov V. S. & Procaccia I. 1995 ‘Intermittency’ in hydrodynamic turbulence as intermediate asymptotics to Kolmogorov scaling. Phys. Rev. Lett. 74, 2690.
Maurer J., Tabeling P. & Zocchi G. 1994 Statistics of turbulence between two counterrotating disks in low-temperature helium gas. Europhys. Lett. 26 (1), 31.
Meldi M. & Sagaut P. 2013 Pressure statistics in self-similar freely decaying isotropic turbulence. J. Fluid Mech. 717, R2.
Mi J., Xu M. & Zhou T. 2013 Reynolds number influence on statistical behaviors of turbulence in a circular free jet. Phys. Fluids 25, 075101.
Moisy F., Tabeling P. & Willaime H. 1999 Kolmogorov equation in a fully developed turbulence experiment. Phys. Rev. Lett. 82 (20), 3994.
Monin A. S. & Yaglom A. M. 2007 Statistical Fluid Dynamics, vol. 2. MIT.
Morrison J. F., Vallikivi M. & Smits A. J. 2016 The inertial subrange in turbulent pipe flow: centreline. J. Fluid Mech. 788, 602613.
Mydlarski L. & Warhaft Z. 1996 On the onset of high- Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.
Ni R. & Xia K. Q. 2013 Kolmogorov constants for the second-order structure function and the energy spectrum. Phys. Rev. E 87 (2), 023002.
Obligado M., Dairay T. & Vassilicos J. C. 2016 Nonequilibrium scalings of turbulent wakes. Phys. Rev. Fluids 1 (4), 044409.
Pearson B. R. & Antonia R. A. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343382.
Peters N., Boschung J., Gauding M., Goebbert J. H., Hill R. J. & Pitsch H. 2016 Higher-order dissipation in the theory of homogeneous isotropic turbulence. J. Fluid Mech. 803, 250274.
Pope S. B. 2000 Turbulent Flows. Cambridge University Press.
Praskovsky A. & Oncley S. 1994 Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids 6, 28862888.
Qian J. 1997 Inertial range and the finite Reynolds number effect of turbulence. Phys. Rev. E 55, 337342.
Qian J. 1998 Normal and anomalous scaling of turbulence. Phys. Rev. E 58, 7325.
Qian J. 1999 Slow decay of the finite Reynolds number effect of turbulence. Phys. Rev. E 60, 3409.
Sagaut P. & Cambon C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.
She Z.-S. & Leveque E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72 (3), 336.
Sreenivasan K. & Antonia R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.
Tabeling P., Zocchi G., Belin F., Maurer J. & Willaime H. 1996 Probability density functions, skewness, and flatness in large Reynolds number turbulence. Phys. Rev. E 53, 16131621.
Tang S. L., Antonia R. A., Djenidi L., Abe H., Zhou T., Danaila L. & Zhou Y. 2015a Transport equation for the mean turbulent energy dissipation rate on the centreline of a fully developed channel flow. J. Fluid Mech. 777, 151177.
Tang S. L., Antonia R. A., Djenidi L. & Zhou Y. 2015b Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. J. Fluid Mech. 784, 109129.
Tchoufag J., Sagaut P. & Cambon C. 2012 Spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence. Phys. Fluids 24 (1), 015107.
Thiesset F., Antonia R. A. & Danaila L. 2013b Scale-by-scale turbulent energy budget in the intermediate wake of two-dimensional generators. Phys. Fluids 25, 115105.
Thiesset F., Antonia R. A. & Djenidi L. 2014 Consequences of self-preservation on the axis of a turbulent round jet. J. Fluid Mech. 748, R2.
Thiesset F., Danaila L. & Antonia R. A. 2013a Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake. J. Fluid Mech. 720, 393423.
Tsuji Y. & Ishihara T. 2003 Similarity scaling of pressure fluctuation in turbulence. Phys. Rev. E 68, 026309.
Valente P. C. & Vassilicos J. C. 2012 Universal dissipation scaling for non-equilibrium turbulence. Phys. Rev. Lett. 108, 214503.
Vassilicos J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.
Vedula P. & Yeung P. K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11, 12081220.
Vincent A. & Meneguzzi M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.
Xu G., Antonia R. A. & Rajagopalan S. 2001 Sweeping decorrelation hypothesis in a turbulent round jet. Fluid Dyn. Res. 28 (5), 311321.
Zhou T. & Antonia R. A. 2000 Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81107.
Zhou T., Antonia R. A. & Chua L. P. 2005 Flow and Reynolds number dependencies of one-dimensional vorticity fluctuations. J. Turbul. 6, N28.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 7
Total number of PDF views: 149 *
Loading metrics...

Abstract views

Total abstract views: 246 *
Loading metrics...

* Views captured on Cambridge Core between 5th May 2017 - 14th December 2017. This data will be updated every 24 hours.