Skip to main content
×
Home
    • Aa
    • Aa

First instability and structural sensitivity of the flow past two side-by-side cylinders

  • M. Carini (a1), F. Giannetti (a2) and F. Auteri (a1)
Abstract
Abstract

The onset of two-dimensional instabilities in the flow past two side-by-side circular cylinders is numerically investigated in the ranges $0.1\leq g\leq 3$ and $\mathit{Re}<100$ , with $g$ being the non-dimensional gap spacing between the surfaces of the two cylinders and $\mathit{Re}$ the Reynolds number. A comprehensive, global stability analysis of the symmetric base flow is carried out, indicating that three harmonic modes and one steady antisymmetric mode become unstable at different values of $g$ and $\mathit{Re}$ . These modes are known to promote distinct flow regimes at increasing values of $g$ : single bluff-body, asymmetric, in-phase and antiphase synchronized vortex shedding. For each mode, the inherent structural sensitivity is examined in order to identify the core region of the related instability mechanism. In addition, by exploiting the structural sensitivity analysis to base flow modifications, a passive control strategy is proposed for the simultaneous suppression of the two synchronized shedding modes using two small secondary cylinders. Its effectiveness is then validated a posteriori by means of direct numerical simulations.

Copyright
Corresponding author
Email address for correspondence: franco.auteri@polimi.it
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

I. Afgan , Y. Kahil , S. Benhamadouche  & P. Sagaut 2011 Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers. Phys. Fluids 23, 075101.

T. Akinaga  & J. Mizushima 2005 Linear stability of flows past two circular cylinders in a side-by-side arrangement. J. Phys. Soc. Japan 74 (5), 13661369.

D. Barkley  & R. D. Henderson 1996 Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.

P. W. Bearman  & A. J. Wadcock 1973 The interaction between a pair of circular cylinders normal to a stream. J. Fluid Mech. 61, 499511.

M. Carini , F. Giannetti  & F. Auteri 2014 On the origin of the flip-flop instability of two side-by-side cylinder wakes. J. Fluid Mech. 742, 552576.

L. Chen , J. Y. Tu  & G. H. Yeoh 2003 Numerical simulation of turbulent wake flows behind two side-by-side cylinders. J. Fluids Struct. 18, 387403.

T. A. Davis 2004 Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30 (2), 196199.

A. Fani , S. Camarri  & M. V. Salvetti 2012 Stability analysis and control of the flow in a symmetric channel with a sudden expansion. Phys. Fluids 24, 084102.

F. Giannetti , S. Camarri  & P. Luchini 2010 Structural sensitivity of the secondary instability in the wake of a circular cylinder. J. Fluid Mech. 651, 319337.

F. Giannetti  & P. Luchini 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.

P. Huerre  & M. Rossi 1998 Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. C. Godrèche  & P. Manneville ), pp. 81294. Cambridge University Press.

S. Ishigai , E. Nishikawa , K. Nishmura  & K. Cho 1972 Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Kármán vortex flow around two tubes at various spacings. Bull. JSME 15, 949956.

W. Jester  & Y. Kallinderis 2003 Numerical study of the incompressible flow about a fixed cylinder pairs. J. Fluids Struct. 17, 561577.

S. Kang 2003 Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Phys. Fluids 15, 24862498.

I. Lashgari , J. O. Pralits , F. Giannetti  & L. Brandt 2012 First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder. J. Fluid Mech. 701, 201227.

R. B. Lehoucq , D. C. Sorensen  & C. Yang 1998 ARPACK Users Guide. SIAM.

K. Liu , D. -J. Ma , D. -J. Sun  & X. -J. Yin 2007 Wake patterns of flow past a pair of circular cylinders in side-by-side arrangements at low Reynolds numbers. J. Hydrodyn. B 19 (6), 690697.

P. Luchini  & A. Bottaro 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.

L. Magri  & M. P. Juniper 2013 Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach. J. Fluid Mech. 719, 183202.

O. Marquet , D. Sipp  & L. Jacquin 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.

P. Meliga  & J. -M. Chomaz 2011 An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. J. Fluid Mech. 671, 137167.

P. Meliga , F. Gallaire  & J. -M. Chomaz 2012 A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech. 699, 216262.

J. R. Meneghini , F. Saltara , C. L. R. Siqueira  & J. A. Ferrari 2001 Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J. Fluids Struct. 15, 327350.

J. Mizushima  & Y. Ino 2008 Stability of flows past a pair of circular cylinders in a side-by-side arrangement. J. Fluid Mech. 595, 491507.

I. Peschard  & P. Le Gal 1996 Coupled wakes of cylinders. Phys. Rev. Lett. 77, 31223125.

J. O. Pralits , F. Giannetti  & L. Brandt 2013 Three-dimensional instability of the flow around a rotating circular cylinder. J. Fluid Mech. 730, 518.

J. Shao  & C. Zhang 2008 Large eddy simulation of the flow past two side-by-side circular cylinders. Intl J. Comput. Fluid Dyn. 22 (6), 393404.

D. Sipp  & A. Lebedev 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.

H. M. Spivack 1946 Vortex frequency and flow pattern in the wake of two parallel cylinders at varied spacings normal to an airstream. J. Aero. Sci. 13, 289297.

D. Sumner 2010 Two circular cylinders in cross-flows: a review. J. Fluids Struct. 26, 849899.

D. Sumner , S. S. T. Wong , S. J. Price  & M. P. Païdoussis 1999 Fluid behavior of side-by-side circular cylinders in steady cross-flow. J. Fluids Struct. 13, 309338.

V. Theofilis 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.

C. H. K. Williamson 1985 Evolution of a single wake behind a pair of bluff bodies. J. Fluid Mech. 159, 118.

S. J. Xu , Y. Zhou  & R. M. C. So 2003 Reynolds number effects on the flow structure behind two side-by-side cylinders. Phys. Fluids 15, 12141219.

M. M. Zdravkovich  & D. L. Pridden 1977 Interference between two circular cylinders; series of unexpected discontinuities. J. Wind Engng Ind. Aerodyn. 2, 255270.

Y. Zhou , H. J. Zhang  & M. W. Yiu 2002 The turbulent wake of two side-by-side circular cylinders. J. Fluid Mech. 458, 303332.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 68 *
Loading metrics...

Abstract views

Total abstract views: 177 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.