Skip to main content
×
Home
    • Aa
    • Aa

The flat plate trailing edge problem

  • Frank E. Talke (a1) (a2) and Stanley A. Berger (a1)
Abstract

The trailing edge region of a finite flat plate in laminar, incompressible flow is examined for the limit of high Reynolds numbers.

It is shown that the trailing edge region is an elliptic region of O(R−¾) and therefore a correct mathematical description must be based upon the full Navier–Stokes equations.

The ‘method of series truncation’ is used to reduce the full Navier–Stokes equations, written in parabolic co-ordinates, to an infinite set of non-linear, coupled, ordinary differential equations. Two sets of asymptotic boundary conditions, called simplified and exact boundary conditions, are determined by matching the Navier–Stokes region downstream with Goldstein's near wake solution.

By numerical integration the solutions for the first and second truncations are obtained for both sets of asymptotic boundary conditions. The results confirm that the size of the trailing edge region is of O(R−¾).

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.