Skip to main content

Flow and heat transfer in convectively unstable turbulent channel flow with solid-wall heat conduction

  • Anirban Garai (a1), Jan Kleissl (a1) and Sutanu Sarkar (a1)

Most turbulent coherent structures in a convectively unstable atmospheric boundary layer are caused by or manifested in ascending warm fluid and descending cold fluids. These structures not only cause ramps in the air temperature timeseries, but also imprint on the underlying solid surface as surface temperature fluctuations. The coupled flow and heat transport mechanism was examined through direct numerical simulation (DNS) of a channel flow allowing for realistic solid–fluid thermal coupling. The thermal activity ratio (TAR; the ratio of thermal inertias of fluid and solid), and the thickness of the solid domain were found to affect the solid–fluid interfacial temperature variations. The solid–fluid interface with large (small) thermal activity ration behaves as an isoflux (isothermal) boundary. For the range of parameters considered here (Grashof number, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Gr} = 3\times 10^5\text {--} 325\times 10^5$ ; $\textit {TAR} = 0.01\text {--}1$ ; solid thickness normalized by heat penetration $\text {depth} = 0.1\text {--}10$ ), the solid thermal properties and thickness influence the fluid temperature only in the viscous or conduction region while the convective forcing influences the turbulent flow. Flow structures influence the interfacial temperature more effectively with increasing TAR and solid thickness compared with a constant temperature boundary condition. The change of channel flow structures with increasing convective instability is examined and the concomitant change of thermal patterns is quantified. Despite large differences in friction Reynolds and Richardson number between the DNS and atmospheric observations, similarities in the flow features were observed.

Corresponding author
Email address for correspondence:
Hide All

Present address: NASA Ames Research Center, Moffett Field, CA 94035, USA.

Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamic in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Antonia, R. A., Abe, H. & Kawamura, H. 2009 Analogy between velocity and scalar fields in a turbulent channel flow. J. Fluid Mech. 628, 241268.
Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.
Balick, L. K., Jeffery, C. A. & Henderson, B. 2003 Turbulence induced spatial variation of surface temperature in high resolution thermal IR satellite imagery. Proc. SPIE 4879, 221230.
Ballard, J. R., Smith, J. A. & Koenig, G. G. 2004 Toward a high temporal frequency grass canopy thermal IR model for background signatures. Proc. SPIE 5431, 251259.
De Bruin, H. A. R., Kohsiek, W. & Van Den Hurk, J. J. M. 1993 A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol. 63, 231257.
Brutsaert, W. 1975 A theory for local evapotranspiration (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res. 11, 543550.
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids. Oxford University Press.
Christen, A. & Voogt, J. A.2009 Linking atmospheric turbulence and surface temperature fluctuations in a street canyon. The 7th International Conference on Urban Climate Paper A3-6. The International Association for Urban Climate.
Christen, A. & Voogt, J. A.2010 Inferring turbulent exchange process in an urban street canyon from high–frequency thermography. The 9th Symposium on the Urban Environment, Paper J3A.3. American Meteorological Society, MA, USA.
Chu, C. R., Parlange, M. B., Katul, G. G. & Albertson, J. D. 1996 Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour. Res. 32, 16811688.
Cohn, S. A., Mayor, S. D., Grund, C. J., Weckwerth, T. M. & Sneff, C. 1998 The lidars in flat terrain (LIFT) experiment. Bull. Am. Meteorol. Soc. 79, 13291343.
Corino, E. R. & Brodkey, R. S. 1969 A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 130.
Derksen, D. S. 1974 Thermal infrared pictures and mapping of microclimate. Neth. J. Agric. Sci. 22, 119132.
Drobinski, P., Brown, R. A., Flamant, P. H. & Pelon, J. 1998 Evidence of organized large eddies by ground based Doppler lidar, sonic anemometer and sodar. Boundary-Layer Meteorol. 88, 343361.
Duchaine, D., Corpron, A., Pons, L., Moureau, V., Nicoud, F. & Poinsot, T. 2009 Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Intl J. Heat Fluid Flow 30, 11291141.
Gao, W., Shaw, R. H. & Paw U, K. T. 1989 Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol. 47, 349377.
Garai, A. & Kleissl, J. 2011 Air and surface temperature coupling in the convective atmospheric boundary layer. J. Atmos. Sci. 68, 29452954.
Garai, A. & Kleissl, J. 2013 Interaction between coherent structures and surface temperature and its effect on ground heat flux in an unstably stratified boundary layer. J. Turbul. 14 (8), 123.
Garai, A., Pardyjak, E., Steenveld, G. J. & Kleissl, J. 2013 Surface temperature and surface layer turbulence in a convective boundary layer. Boundary-Layer Meteorol. 148, 5172.
Gurka, R., Liberzon, A. & Hetsroni, G. 2004 Detecting coherent patterns in a flume by using PIV and IR imaging technique. Exp. Fluids 37, 230236.
Hetsroni, G., Kowalewski, T. A., Hu, B. & Mosyak, A. 2001 Tracking of coherent thermal structures on a heated wall by means of infrared thermography. Exp. Fluids 30, 286294.
Hetsroni, G. & Rozenblit, R. 1994 Heat transfer to a liquid–solid mixture in a flume. Intl J. Multiphase Flow 20, 671689.
Högström, U. L. F. 1988 Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol. 42, 5578.
Hunt, J. C. R., Vrieling, A. J., Nieuwstadt, F. T. M. & Fernando, H. J. S. 2003 The influence of the thermal diffusivity of the lower boundary on eddy motion in convection. J. Fluid Mech. 491, 183205.
Iida, O. & Kasagi, N. 1997 Direct numerical simulation of unstably stratified turbulent channel flow. Trans. ASME J. Heat Transfer 119, 5361.
Jiménez, J. 2012 Cascade in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.
Johansson, A. V. & Wikström, P. M. 1999 DNS and modelling of passive scalar transport in turbulent channel flow with a focus on scalar dissipation rate modelling. Flow Turbul. Combust. 63, 223245.
Kader, B. A. 1981 Temperature and concentration profiles in fully turbulent boundary layers. Intl J. Heat Mass Transfer 24, 15411544.
Kaimal, J. C. & Businger, J. A. 1970 Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612620.
Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cote, O. R. & Izumi, Y. 1976 Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33, 21522169.
Katul, G. G., Poggi, D., Cava, D. & Finnigan, J. J. 2006a The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol. 120, 367375.
Katul, G. G., Porporato, A., Cava, D. & Siqueria, M. B. 2006b An analysis of intermittency, scaling, and surface renewal in atmospheric surface layer turbulence. Physica D 215, 117126.
Katul, G. G., Schieldge, J., Hsieh, C. I. & Vidakovic, B. 1998 Skin temperature perturbations induced by surface layer turbulence above a grass surface. Water Resour. Res. 3, 12651274.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133136.
Kleissl, J., Hong, S. H. & Hendrickx, J. M. H. 2009 New Mexico scintillometer network in support of remote sensing and hydrologic and meteorological models. Bull. Am. Meteorol. Soc. 90, 207218.
LeMone, M. A. 1973 The structure and dynamic of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci. 30, 10771091.
Lenschow, D. H. & Boba Stankov, B. 1986 Length scales in the convective boundary layer. J. Atmos. Sci. 43, 11981209.
Lothon, M., Lenschow, D. H. & Mayor, S. D. 2006 Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Boundary-Layer Meteorol. 121, 521536.
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akkad. Nauk SSSR Geophiz. Inst. 24, 163187.
Morinishi, Y., Tamano, S. & Nakamura, E. 2007 New scaling of turbulence statistics for incompressible thermal channel flow with different total heat flux gradients. Intl J. Heat Mass Transfer 50, 17811789.
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_{\tau } = 590$ . Phys. Fluids 11, 943945.
Paulson, C. A. 1970 The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857861.
Paw U, K. T., Qiu, J., Su, H.-B., Watanabe, T. & Brunet, Y. 1995 Surface renewal analysis: a new method to obtain scalar fluxes. Agric. Forest Meteorol. 77, 119137.
Pierce, B., Moin, P. & Sayadi, T. 2013 Application of vortex identification schemes to direct numerical simulation data of a transitional boundary layer. Phys. Fluids 25, 015102.
Pope, S. B. 2000 Turbulent Flows. pp. 1771. Cambridge University Press.
Raasch, S. & Etling, D. 1991 Numerical simulation of rotating turbulent thermal convection. Beitr. Phys. Atmos. 64, 185199.
Raupach, M. R. 1981 Conditional statistics of Reynolds stress in rough-wall and smoothwall turbulent boundary layers. J. Fluid Mech. 108, 363382.
Renno, N. O., Abreu, V. J., Koch, J., Smith, P. H., Hartogensis, O. K., De Bruin, H. A. R., Burose, D., Delory, G. T., Farrell, W. M., Watts, C. J., Garatuza, J., Parker, M. & Carswell, A. 2004 MATADOR 2002: a pilot experiment on convective plumes and dust devils. J. Geophys. Res. 109, E07001.
Schols, J. L. J. 1984 The detection and measurement of turbulent structures in the atmospheric surface layer. Boundary-Layer Meteorol. 29, 3958.
Schols, J. L. J., Jansen, A. E. & Krom, J. G. 1985 Characteristics of turbulent structures in the unstable atmospheric surface layer. Boundary-Layer Meteorol. 33, 173196.
Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent covection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.
Taylor, R. J. 1958 Thermal structures in the lowest layers of the atmosphere. Austral. J. Phys. 11, 168176.
Tiselj, I., Bergant, R., Mavk, M., Bajsić, I. & Hetsroni, G. 2001 DNS of turbulent heat transfer in channel flow with heat conduction in the solid wall. Trans. ASME J. Heat Transfer 123, 849857.
Verzicco, R. & Sreenivasan, K. R. 2008 A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 203219.
Vogt, R.2008 Visualisation of turbulent exchange using thermal camera. 18th Symposium on Boundary Layer and Turbulence, Paper 8B.1. American Meteorological Society, MA, USA.
Wang, X., Castillo, L. & Araya, G. 2008 Temperature scalings and profiles in forced convection turbulent boundary layers. Trans. ASME J. Heat Transfer 130, 021701.
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.
Wicker, L. J. & Skamarock, W. C. 2002 Time-splitting methods for elastic models using forward time schemes. Mon. Weath. Rev. 130, 20882097.
Wilczak, J. M. & Businger, J. A. 1983 Thermally indirect motions in the convective atmospheric boundary layer. J. Atmos. Sci. 40, 343358.
Wilczak, J. M. & Tillman, J. E. 1980 The three-dimensional structure of convection in the atmospheric boundary layer. J. Atmos. Sci. 37, 24242443.
Williamson, J. H. 1980 Low storage Runge–Kutta schemes. J. Comput. Phys. 35, 4856.
Wyngaard, J. C., Coté, O. R. & Izumi, Y. 1971 Local free convection, similarity and the budgets of shear stress and heat flux. J. Atmos. Sci. 28, 11711182.
Young, G. S. 1988a Turbulence strucutre of the convective boundary layer. Part I: variability of normalized turbulence statistics. J. Atmos. Sci. 45, 712719.
Young, G. S. 1988b Turbulence strucutre of the convective boundary layer. Part II: phoenix 78 aircraft observations of thermals and their environment. J. Atmos. Sci. 45, 727735.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanism for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 71 *
Loading metrics...

Abstract views

Total abstract views: 276 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th March 2018. This data will be updated every 24 hours.