Skip to main content Accessibility help

Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient

  • Mathias Dietzel (a1) and Steffen Hardt (a1)


The effect of an axial temperature gradient on the flow profile and the induced streaming potential of a pressure-driven symmetric electrolyte in a slit channel is investigated. Based on the non-isothermal Nernst–Planck equations, as well as the Poisson equation in the lubrication approximation, expressions for the ion distribution in the electric double layer (EDL) are derived. It is found that thermophoretic ion motion and a temperature-dependent electrophoretic ion mobility increase the local EDL thickness with temperature, whereas a temperature-dependent permittivity shrinks the EDL. Within the Debye–Hückel approximation, the Navier–Stokes equation with the corresponding electric body force terms is solved. Analytical expressions for the flow profile and the induced (streaming) field under non-isothermal conditions are derived. It is shown that for such a situation the induced electric field is the linear superposition of at least seven individual contributions. For very wide channels, only the thermoelectric field typically present in bulk electrolytes when subjected to a temperature gradient (Soret equilibrium) as well as the conventional pressure-induced streaming field are of importance. Counterintuitively, for the latter, while still being affected by the temperature dependence of the dielectric permittivity and local salt concentration, the temperature dependencies of the viscosity, Fickian diffusion coefficients and ion electromobilities exactly cancel each other. For narrow channels, five additional contributions become relevant, which – similar to the Soret voltage – do not vanish in the case that the externally applied pressure gradient is removed. The first is caused by selective thermo-electromigration driven by the interplay between the temperature-dependent electrophoretic ion mobility and the interaction of the ions with the surface wall charge. This non-advective effect is at its maximum under extreme confinement. For channels whose widths are of the same order as the EDL thickness, four thermoosmotic effects become significant. Besides the well-known thermoosmosis due to the temperature dependence of the dielectric permittivity in the (extended) Korteweg–Helmholtz force, it is demonstrated that – by contrast to isothermal conditions – a thermal gradient renders the ion cloud in the EDL out of mechanical equilibrium. In this context it is shown that a thermophoretic ion motion (i.e. the intrinsic Soret effect of the ions) and a temperature-dependent ion electromobility as well as a temperature-dependent permittivity not only cause an axial gradient of the EDL potential, but simultaneously lead to a pressure of thermal origin, which sets the fluid into an advective motion. Corresponding phenomena were not previously discussed in the literature and may be interpreted as an apparent, thermally induced slip velocity within the EDL. Subsequently, the ion advection affiliated with such thermoosmotic flow may induce a thermoelectric field of a similar order of magnitude to that caused by more conventional thermal effects.


Corresponding author

Email address for correspondence:


Hide All
Agar, J. N. & Turner, J. C. R. 1960 Thermal diffusion in solutions of electrolytes. Proc. R. Soc. Lond. A 255, 307330.
Barz, D. P. J., Zadeh, H. F. & Ehrhard, P. 2011 Measurements and simulations of time-dependent flow fields within an electrokinetic micromixer. J. Fluid Mech. 676, 265293.
Bonetti, M., Nakamae, S., Roger, M. & Guenoun, P. 2011 Huge Seebeck coefficients in nonaqueous electrolytes. J. Chem. Phys. 134, 114513.
Buchner, R., Hefter, G. T. & May, P. M. 1999 Dielectric relaxation of aqueous NaCl solutions. J. Phys. Chem. A 103 (1), 19.
Burgreen, D. & Nakache, F. R. 1964 Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68 (5), 10841091.
Castellanos, A. 1998 Electrohydrodynamics (ed. Castellanos, A.). Springer.
Daguji, H. 2009 Ion transport in nanofluidic channels. Chem. Soc. Rev. 39, 901911.
Dariel, M. S. & Kedem, O. 1975 Thermoosmosis in semipermeable membranes. J. Phys. Chem. 79 (4), 336342.
Derjaguin, B., Churaev, N. & Muller, V. 1987 Surface Forces. Plenum.
Dietzel, M. & Hardt, S.2012 Streaming potential of an electrolyte in a microchannel with a lateral temperature gradient. In Proceedings of the 3rd Conference on Microfluidics, Heidelberg ( $\unicode[STIX]{x1D707}$ Flu12-108), vol. 39.
Dietzel, M. & Hardt, S. 2016 Thermoelectricity in confined liquid electrolytes. Phys. Rev. Lett. 116, 225901.
Dreyer, W., Guhlke, C. & Müller, R. 2013 Overcoming the shortcomings of the Nernst–Planck model. Phys. Chem. Chem. Phys. 15, 70757086.
Dukhin, S. S. 1993 Non-equilibrium electric surface phenomena. Adv. Colloid Interface Sci. 44, 1134.
Fair, J. C. & Osterle, J. F. 1971 Reverse electrodialysis in charged capillary membranes. J. Chem. Phys. 54 (8), 33073316.
Fitts, D. D. 1962 Non-equilibrium Thermodynamics. McGraw-Hill.
Fletcher, C. A. J. 1991 Springer Series in Computational Physics (ed. Chattot, J.-J., Fletcher, C. A. J., Glowinski, R., Hillebrandt, W., Holt, M., Hussaini, Y., Keller, H. B., Killeen, J., Meiron, D. I., Norman, M. L., Orszag, S. A., Roesner, K. G. & Rusanov, V. V.), vol. 1. Springer.
Gaeta, F. S., Ascolese, E., Bencivenga, U., Ortiz de Zárate, J. M., Pagliuca, N., Perna, G., Rossi, S. & Mita, D. G. 1992 Theories and experiments on nonisothermal matter transport in porous media. J. Phys. Chem. 96, 63426354.
Ghonge, T., Chakraborty, J., Dey, R. & Chakraborty, S. 2013 Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients. Phys. Rev. E 88, 053020.
González, A., Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. 2006 Electrothermal flows generated by alternating and rotating electric fields in microsystems. J. Fluid Mech. 564, 415433.
de Groot, S. R. & Mazur, P. 1984 Non-equilibrium Thermodynamics. Dover.
Grosu, F. P. & Bologa, M. K. 2010 Thermoelectrohydrodynamic methods of energy conversion. Surf. Eng. Appl. Electrochem. 46 (6), 582588.
Guthrie, G., Wilson, J. N. & Schomaker, V. 1949 Theory of the thermal diffusion of electrolytes in a Clusius column. J. Chem. Phys. 17 (3), 310313.
Haase, R. 1969 Thermodynamics of Irreversible Processes. Dover.
Hartung, M.2007 A detailed treatment of the measurement of transport coefficients in transient grating experiments. PhD thesis, Universität Bayreuth.
Helfand, E. 1960 Theory of heat of transport of electrolytic solutions. J. Chem. Phys. 32 (3), 857866.
van der Heyden, F. H. J., Stein, D. & Dekker, C. 2005 Streaming currents in single nanofluidic channel. Phys. Rev. Lett. 95, 116104.
Hills, G. J., Jacobs, P. W. M. & Lakshiminarayanaiah, N. 1957 Non-isothermal membrane potentials. Nature 179 (4550), 9697.
Ishido, T., Mizutani, H. & Baba, K. 1983 Streaming potential observations, using geothermal wells and in situ electrokinetic coupling coefficients under high temperature. Tectonophysics 91, 89104.
Kang, T. J., Fang, S., Kozlov, M. E., Haines, C. S., Li, N., Kim, Y. H., Chen, Y. & Baughman, R. H. 2012 Electrical power from nanotube and graphene electrochemical thermal energy harvester. Adv. Funct. Mater. 22, 477489.
Keh, H. J. & Tseng, H. C. 2001 Transient electrokinetic flow in fine capillaries. J. Colloid Interface Sci. 242, 450459.
Kim, M. J., Beskok, A. & Kihm, K. D. 2002 Electro-osmosis-driven micro-channel flows: a comparative study of microscopic particle image velocimetry measurements and numerical simulations. Exp. Fluids 33, 170180.
Langmuir, I. 1938 The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J. Chem. Phys. 6, 873896.
Leaist, D. G. 1990 Soret coefficients of mixed electrolytes. J. Solution Chem. 19, 110.
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.
Levine, S., Marriott, J. R. & Robinson, K. 1975 Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc. Faraday Trans. 2 71, 111.
Lide, D. R. 2009 CRC Handbook of Chemistry and Physics (ed. Lide, D. R.). CRC Press.
Light, T. S. & Licht, S. L. 1987 Conductivity and resistivity of water from the melting to critical points. Analyt. Chem. 59, 23272330.
Mansouri, A., Bhattacharjee, S. & Kostiuk, L. W. 2007 Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy. J. Phys. Chem. B 111, 1283412843.
Masliyah, J. H. & Bhattacharjee, S. 2006 Electrokinetics and Colloid Transport Phenomena. John Wiley & Sons.
Maynes, D. & Webb, B. W. 2004 The effect of viscous dissipation in thermally fully-developed electro-osmotic heat transfer in microchannels. Intl J. Heat Mass Transfer 47, 987999.
Nadler, B., Schuss, Z., Singer, A. & Eisenberg, R. S. 2004 Ionic diffusion through confined geometries: from Langevin equations to partial differential equations. J. Phys.: Condens. Matter 16, S2153S2165.
Oelkers, E. H. & Helgeson, H. C. 1989 Calculation of the transport properties of aqueous species at pressures to 5 kb and temperatures to 1000 °C. J. Solution Chem. 18 (7), 601640.
Onsager, L. 1931 Reciprocal relations in irreversible processes: I. Phys. Rev. 37, 405426.
Pascall, A. J. & Squires, T. M. 2011 Electrokinetics at liquid/liquid interfaces. J. Fluid Mech. 684, 163191.
Piazza, R. 2004 ‘Thermal forces’: colloids in a temperature gradient. J. Phys.: Condens. Matter. 16, S4195S4211.
Reppert, P. M. & Morgan, F. D. 2003 Temperature-dependent streaming potentials: 1. Theory. J. Geophys. Res. 108 (B11), 2546.
Revil, A., Pezard, P. A. & Glover, P. W. J. 1999 Streaming potential in porous media: 1. Theory of zeta potential. J. Geophys. Res. 104 (B9), 2002120031.
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.
Sadeghi, A. & Saidi, M. H. 2010 Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels. Intl J. Heat Mass Transfer 53, 37823791.
Salata, O. V. 2005 Tools of nanotechnology: electrospray. Curr. Nanoscience 1, 2533.
Sandbakk, K. D., Bentien, A. & Kjelstrup, S. 2013 Thermoelectric effects in ion conducting membranes and perspectives for thermoelectric energy conversion. J. Membr. Sci. 434, 1017.
Sasidhar, V. & Ruckenstein, E. 1982 Anomalous effects during electrolyte osmosis across charged porous membranes. J. Colloid Interface Sci. 85 (2), 332361.
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.
Sherwood, J. D. 1980 The primary electroviscous effect in a suspension of spheres. J. Fluid Mech. 101, 609629.
Snowdon, P. N. & Turner, J. C. R. 1960a The concentration dependence of the Soret effect. Trans. Faraday Soc. 56 (10), 18121819.
Snowdon, P. N. & Turner, J. C. R. 1960b The Soret effect in some 0.01 normal aqueous electrolytes. Trans. Faraday Soc. 56 (10), 14091418.
Song, C. Y. & Wang, S. H. 2004 Analysis of rotation-driven electrokinetic flow in microscale gap regions of rotating disk system. J. Colloid Interface Sci. 269, 484498.
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: Microfluidics toward lab-on-chip. Annu. Rev. Fluid Mech. 36, 381411.
Takeyama, N. & Nakashima, K. 1983 Thermodynamics in thermal diffusion in aqueous ion solutions. J. Phys. Soc. Japan 52 (8), 26992705.
Takeyama, N. & Nakashima, K. 1988 Proportionality of intrinsic heat of transport to standard entropy of hydration for aqueous ions. J. Solution Chem. 17 (4), 305325.
Tasaka, M. 1986 Thermal membrane potential and thermoosmosis across charged membranes. Pure Appl. Chem. 58 (12), 16371646.
Tasaka, M. & Nagasawa, M. 1978 Thermoosmosis through charged membranes. Theoretical analysis of concentration dependence. Biophys. Chem. 8, 111116.
Tyrrell, H. J. V., Taylor, D. A. & Williams, C. M. 1954 Free nerve endings as transducers of thermal stimuli. Nature 174 (4437), 918919.
Vigolo, D., Buzzaccaro, S. & Piazza, R. 2010 Thermophoresis and thermoelectricity in surfactant solutions. Langmuir 26 (11), 77927801.
Viovy, J. L. 2000 Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev. Mod. Phys. 72 (3), 813872.
Wang, S. C., Chen, H. P., Lee, C. Y., Yu, C. C. & Chang, H. C. 2006 Ac electro-osmotic mixing induced by non-contact external electrodes. Biosens. Bioelectr. 22, 563567.
Wong, J. & Melcher, J. R. 1969 Thermally induced electroconvection. Phys. Fluids 11, 2588.
Wood, J. A., Benneker, A. M. & Lammertink, R. G. H. 2016 Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels. J. Phys.: Condens. Matter. 28, 114002.
Würger, A. 2010 Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 73, 126601.
Xie, Y., Sherwood, J. D., Shui, L., van den Berg, A. & Eijkel, J. C. T. 2011 Strong enhancement of streaming current power by application of two phase flow. Lab on a Chip 11, 40064011.
Yang, J., Lu, F., Kostiuk, L. W. & Kwok, D. Y. 2003 Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J. Micromech. Microengng 13, 963970.
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part I. General Theory. J. Fluid Mech. 685, 306334.
Yossifon, G., Frankel, I. & Miloh, T. 2006 On electro-osmotic flows through microchannel junctions. Phys. Fluids 18, 117108.
Zhao, T. S. & Liao, Q. 2002 Thermal effects on electro-osmotic pumping of liquids in microchannel. J. Micromech. Microengng 12, 962970.
Zhou, Y., Xie, Y., Yang, C. & Lam, Y. C. 2015 Thermal effect on microchannel electro-osmotic flow with consideration of thermodiffusion. Trans. ASME J. Heat Transfer 137, 091023.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient

  • Mathias Dietzel (a1) and Steffen Hardt (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.