Skip to main content Accessibility help

Flow control over an airfoil using virtual Gurney flaps

  • Li-Hao Feng (a1), Kwing-So Choi (a2) and Jin-Jun Wang (a1)


Flow control over a NACA 0012 airfoil is carried out using a dielectric barrier discharge (DBD) plasma actuator at the Reynolds number of 20 000. Here, the plasma actuator is placed over the pressure (lower) side of the airfoil near the trailing edge, which produces a wall jet against the free stream. This reverse flow creates a quasi-steady recirculation region, reducing the velocity over the pressure side of the airfoil. On the other hand, the air over the suction (upper) side of the airfoil is drawn by the recirculation, increasing its velocity. Measured phase-averaged vorticity and velocity fields also indicate that the recirculation region created by the plasma actuator over the pressure surface modifies the near-wake dynamics. These flow modifications around the airfoil lead to an increase in the lift coefficient, which is similar to the effect of a mechanical Gurney flap. This configuration of DBD plasma actuators, which is investigated for the first time in this study, is therefore called a virtual Gurney flap. The purpose of this investigation is to understand the mechanism of lift enhancement by virtual Gurney flaps by carefully studying the global flow behaviour over the airfoil. First, the recirculation region draws the air from the suction surface around the trailing edge. The upper shear layer then interacts with the opposite-signed shear layer from the pressure surface, creating a stronger vortex shedding from the airfoil. Secondly, the recirculation region created by a DBD plasma actuator over the pressure surface displaces the positive shear layer away from the airfoil, thereby shifting the near-wake region downwards. The virtual Gurney flap also changes the dynamics of laminar separation bubbles and associated vortical structures by accelerating laminar-to-turbulent transition through the Kelvin–Helmholtz instability mechanism. In particular, the separation point and the start of transition are advanced. The reattachment point also moves upstream with plasma control, although it is slightly delayed at a large angle of attack.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flow control over an airfoil using virtual Gurney flaps
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flow control over an airfoil using virtual Gurney flaps
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flow control over an airfoil using virtual Gurney flaps
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 128.
Almutairi, J. H., Jones, L. E. & Sandham, N. D. 2010 Intermittent bursting of a laminar separation bubble on an airfoil. AIAA J. 48, 414426.
Atik, H., Kim, C. Y., Van Dommelen, L. L. & Walker, J. D. A. 2005 Boundary-layer separation control on a thin airfoil using local suction. J. Fluid Mech. 535, 415443.
Batill, S. M. & Muller, T. J. 1981 Visualization of transition in the flow over an airfoil using the smoke-wire technique. AIAA J. 19, 340345.
Benard, N., Jolibois, J. & Moreau, E. 2009 Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator. J. Electrostat. 67, 133139.
Boutilier, M. S. H. & Yarusevych, S. 2012 Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids 24, 084105.
Burgmann, S., Brücker, C. & Schröder, W. 2006 Scanning PIV measurements of a laminar separation bubble. Exp. Fluids 41, 319326.
Burgmann, S., Dannemann, J. & Schröder, W. 2008 Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp. Fluids 44, 609622.
Burgmann, S. & Schröder, W. 2008 Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp. Fluids 45, 675691.
Colonius, T. & Williams, D. R. 2011 Control of vortex shedding on two- and three-dimensional aerofoils. Phil. Trans. R. Soc. A 369, 15251539.
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.
Diwan, S. S. & Ramesh, O. N. 2009 On the origin of the inflectional instability of a laminar separation bubble. J. Fluid Mech. 629, 263298.
Duvigneau, R., Hay, A. & Visonneau, M. 2007 Optimal location of a synthetic jet on an airfoil for stall control. Trans. ASME: J. Fluids Engng 129, 825833.
Ellsworth, R. H. & Mueller, T. J. 1991 Airfoil boundary layer measurements at low Re in an accelerating flow from a nonzero velocity. Exp. Fluids 11, 368374.
Feng, L. H., Jukes, T. N., Choi, K. S. & Wang, J. J. 2012 Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Exp. Fluids 52, 15331546.
Feng, L. H. & Wang, J. J. 2010 Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech. 662, 232259.
Gaster, M.1967 The structure and behaviour of laminar separation bubbles. Aero. Res. Counc. R & M 3595, pp. 1–31.
Genç, M. S., Kaynak, Ü. & Yapici, H. 2011 Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. Eur. J. Mech. (B/Fluids) 30, 218235.
Greenblatt, D. & Wygnanski, I. J. 2000 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36, 487545.
Hain, R., Kähler, C. J. & Radespiel, R. 2009 Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 630, 129153.
Hatman, A. & Wang, T. 1999 A prediction model for separated-flow transition. Trans. ASME: J. Turbomach. 121, 594602.
He, C., Corke, T. C. & Patel, M. P. 2009 Plasma flaps and slats: an application of weakly ionized plasma actuators. J. Aircraft 46, 864873.
Horton, H. P.1969 A semi-empirical theory for the growth and bursting of laminar separation bubbles. Aero. Res. Counc. Current Papers 1073.
Huang, R. F. & Lin, C. L. 1995 Vortex shedding and shear-layer instability of wing at low Reynolds numbers. AIAA J. 33, 13981403.
Inasawa, A., Ninomiya, C. & Asai, M. 2013 Suppression of tonal trailing-edge noise from an airfoil using a plasma actuator. AIAA J. 51, 16951702.
Jeffrey, D. R. M. & Hurst, D. W.1996 Aerodynamic of the Gurney flap. AIAA Paper 96–2418.
Jones, L. E., Sandberg, R. D. & Sandham, N. D. 2010 Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257296.
Jukes, T. N. & Choi, K.-S. 2009 Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Phys. Fluids 21, 084103.
Jukes, T. N., Choi, K.-S., Johnson, G. A. & Scott, S. J. 2006 Characterization of surface plasma-induced wall flows through velocity and temperature measurements. AIAA J. 44, 764771.
Jukes, T. N., Choi, K.-S., Segawa, T. & Yoshida, H. 2008 Jet flow induced by a surface plasma actuator. Proc. Inst. Mech. Engrs I 222, 347356.
Kim, D. H., Chang, J. W. & Chung, J. 2011 Low-Reynolds-number effect on aerodynamic characteristics of a NACA 0012 airfoil. J. Aircraft 48, 12121215.
Kinzel, M. P., Maughmer, M. D. & Duque, E. P. N. 2010 Numerical investigation on the aerodynamics of oscillating airfoils with deployable Gurney flaps. AIAA J. 48, 14571469.
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.
Laitone, E. V. 1997 Wind tunnel tests of wings at Reynolds numbers below 70 000. Exp. Fluids 23, 405409.
Lang, M., Rist, U. & Wagner, S. 2004 Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp. Fluids 36, 4352.
Lee, T. 2009 Aerodynamic characteristics of airfoil with perforated Gurney-type flaps. J. Aircraft 46, 542548.
Lee, T. 2011 PIV study of near-field tip vortex behind perforated Gurney flaps. Exp. Fluids 50, 351361.
Lee, T. & Ko, L. S. 2009 PIV investigation of flowfield behind perforated Gurney-type flaps. Exp. Fluids 46, 10051019.
Lee, T. & Su, Y. Y. 2011 Lift enhancement and flow structure of airfoil with joint trailing-edge flap and Gurney flap. Exp. Fluids 50, 16711684.
Li, Y. C., Wang, J. J. & Hua, J. 2007 Experimental investigations on the effects of divergent trailing edge and Gurney flaps on a supercritical airfoil. Aerosp. Sci. Technol. 11, 9199.
Li, Y. C., Wang, J. J. & Zhang, P. F. 2002 Effect of Gurney flaps on a NACA0012 airfoil. Flow Turbul. Combust. 68, 2739.
Li, Y. C., Wang, J. J. & Zhang, P. F. 2003 Influences of mounting angles and locations on the effects of Gurney flaps. J. Aircraft 40, 494498.
Lian, Y. & Shyy, W. 2007 Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA J. 45, 15011513.
Liebeck, R. H. 1978 Design of subsonic airfoils for high lift. J. Aircraft 15, 547561.
Little, J., Nishihara, M., Adamovich, I. & Samimy, M. 2010 High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp. Fluids 48, 521537.
Little, J. & Samimy, M. 2010 High-lift airfoil separation with dielectric barrier discharge plasma actuation. AIAA J. 48, 28842898.
Liu, T. S. & Montefort, J. 2007 Thin-airfoil theoretical interpretation for Gurney flap lift enhancement. J. Aircraft 44, 667671.
Lombardi, A. J., Bowles, P. O. & Corke, T. C. 2013 Closed-loop dynamic stall control using a plasma actuator. AIAA J. 51, 11301141.
Mabe, J. H., Calkins, F. T., Wesley, B., Woszidlo, R., Taubert, L. & Wygnanski, I. 2009 Single dielectric barrier discharge plasma actuators for improved airfoil performance. J. Aircraft 46, 847855.
Marxen, O. & Rist, U. 2010 Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 3754.
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D: Appl. Phys. 40, 605636.
Mueller, T. J. & Delaurier, J. D. 2003 Aerodynamics of small vehicles. Annu. Rev. Fluid Mech. 35, 89111.
Nickerson, J. D.1986 A study of vortex generators at low Reynolds numbers. AIAA Paper 1986–0155.
O’Meara, M. M. & Mueller, T. J. 1987 Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J. 25, 10331041.
Pauley, L. L., Moin, P. & Reynolds, W. C. 1990 The structure of two-dimensional separation. J. Fluid Mech. 220, 397411.
Post, M. L. & Corke, T. C. 2004 Separation control on high angle of attack airfoil using plasma actuators. AIAA J. 42, 21772184.
Post, M. L. & Corke, T. C. 2006 Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA J. 44, 31253135.
Postl, D., Balzer, W. & Fasel, H. F. 2011 Control of laminar separation using pulsed vortex generator jets: direct numerical simulations. J. Fluid Mech. 676, 81109.
Rist, U. & Augustin, K. 2006 Control of laminar separation bubbles using instability waves. AIAA J. 44, 22172223.
Rizzetta, D. P. & Visbal, M. R. 2011 Numerical investigation of plasma-based control for low-Reynolds-number airfoil flows. AIAA J. 49, 411425.
Rizzetta, D. P. & Visbal, M. R. 2012 Effect of plasma-based control on low-Reynolds-number flapping airfoil performance. AIAA J. 50, 131147.
Rogers, E. O. & Donnelly, M. J.2004 Characteristics of a dual-slotted circulation control wing of low aspect ratio intended for naval hydrodynamic applications. AIAA Paper 2004–1244.
Saathoff, P. J. & Melbourne, W. H. 1997 Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble. J. Fluid Mech. 337, 124.
Schuele, C. Y. & Greenblatt, D. 2010 Combined plasma and Gurney flap flow control at low flight Reynolds numbers. AIAA J. 48, 27142718.
Seshagiri, A., Cooper, E. & Traub, L. W. 2009 Effects of vortex generators on an airfoil at low Reynolds numbers. J. Aircraft 46, 116122.
Singh, M. K., Dhanalakshmi, K. & Chakrabartty, S. K. 2007 Navier–Stokes analysis of airfoils with Gurney flap. J. Aircraft 44, 14871493.
Sosa, R., Artana, G., Moreau, E. & Touchard, G. 2007 Stall control at high angle of attack with plasma sheet actuators. Exp. Fluids 42, 143167.
Spalart, P. R. & Strelets, M. K. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.
Sung, H. J., Chung, Y. M. & Kiya, M. 1996 Vortex simulation of leading-edge separation bubble with local forcing. Fluid Dyn. Res. 18, 99115.
Traub, L. W. & Agarwal, G. 2008 Aerodynamic characteristics of a Gurney/jet flap at low Reynolds numbers. J. Aircraft 45, 424429.
Traub, L. W., Miller, A. C. & Rediniotis, O. 2004 Comparisons of a Gurney and jet flap for hingeless control. J. Aircraft 41, 420423.
Troolin, D. R., Longmire, E. K. & Lai, W. T. 2006 Time resolved PIV analysis of flow over a NACA0015 airfoil with Gurney flap. Exp. Fluids 41, 241254.
Vorobiev, A., Rennie, R. M. & Jumper, E. J. 2013 Lift enhancement by plasma actuators at low Reynolds numbers. J. Aircraft 50, 1219.
Wahidi, R. & Bridges, D. H. 2012 Effects of distributed suction on an airfoil at low Reynolds number. AIAA J. 50, 523539.
Wang, J. J., Choi, K.-S., Feng, L. H., Jukes, T. N. & Whalley, R. D. 2013 Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 62, 5278.
Wang, J. J., Li, Y. C. & Choi, K.-S. 2008 Gurney flap-lift enhancement, mechanisms and applications. Prog. Aerosp. Sci. 44, 2247.
Watmuff, J. H. 1999 Evolution of a wave packet into vortex loops in a laminar separation bubble. J. Fluid Mech. 397, 119169.
Wei, Q. K., Niu, Z. G., Chen, B. & Huang, X. 2013 Bang-bang control applied in airfoil roll control with plasma actuators. J. Aircraft 50, 670676.
Wu, J. Z., Lu, X. Y., Denny, A. G., Fan, M. & Wu, J. M. 1998 Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 2158.
Yang, Z. & Hu, H. 2008 Laminar flow separation and transition on a low-Reynolds-number airfoil. J. Aircraft 45, 10671070.
Yarusevych, S. & Boutilier, M. S. H. 2011 Vortex shedding of an airfoil at low Reynolds numbers. AIAA J. 49, 22212227.
Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2005 Airfoil boundary layer separation and control at low Reynolds numbers. Exp. Fluids 38, 545547.
Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2006 Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Phys. Fluids 18, 044101.
Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2009 On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 632, 245271.
Yu, T., Wang, J. J. & Zhang, P. F. 2011 Numerical simulation of Gurney flap on RAE-2822 supercritical airfoil. J. Aircraft 48, 15651575.
Zaman, K. B. M. Q., Bar-Severs, A. & Mangalam, S. M. 1987 Effect of acoustic excitation on the flow over a low-Re airfoil. J. Fluid Mech. 182, 127148.
Zhang, P. F., Liu, A. B. & Wang, J. J. 2009 Aerodynamic modification of a NACA 0012 airfoil by trailing-edge plasma Gurney flap. AIAA J. 47, 24672474.
Zhang, P. F., Yan, B., Liu, A. B. & Wang, J. J. 2010 Numerical simulation on plasma circulation control airfoil. AIAA J. 48, 22132225.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.
Zhou, Y., Alam, M. M., Yang, H. X., Guo, H. & Wood, D. H. 2011 Fluid forces on a very low Reynolds number airfoil and their prediction. Intl J. Heat Fluid Flow 32, 329339.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed