Skip to main content
    • Aa
    • Aa

Flow of fluids with pressure- and shear-dependent viscosity down an inclined plane

  • K. R. Rajagopal (a1), G. Saccomandi (a2) and L. Vergori (a3)

In this paper we consider a fluid whose viscosity depends on both the mean normal stress and the shear rate flowing down an inclined plane. Such flows have relevance to geophysical flows. In order to make the problem amenable to analysis, we consider a generalization of the lubrication approximation for the flows of such fluids based on the development of the generalization of the Reynolds equation for such flows. This allows us to obtain analytical solutions to the problem of propagation of waves in a fluid flowing down an inclined plane. We find that the dependence of the viscosity on the pressure can increase the breaking time by an order of magnitude or more than that for the classical Newtonian fluid. In the viscous regime, we find both upslope and downslope travelling wave solutions, and these solutions are quantitatively and qualitatively different from the classical Newtonian solutions.

Corresponding author
Email address for correspondence:
Hide All
1. AnceyC. 2007 Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 435.
2. AndradeE. C. 1934 Theory of viscosity of liquids. Phil. Mag. 17, 497698.
3. BarusC. 1893 Isotherms, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45, 8796.
4. BenjaminT. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid. Mech. 2, 554574.
5. BertozziA. L. & ShearerM. 2000 Existence of undercompressive traveling waves in thin film equations. SIAM J. Math. Anal. 32, 194213.
6. BinnieA. M. 1957 Experiments on onset of wave formation on films of water flowing down a vertical plane. J. Fluid. Mech. 2, 551553.
7. BridgmanP. W. 1931 The Physics of High Pressure. Macmillan.
8. BulicekM., MalekJ. & RajagopalK. R. 2009 Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries. SIAM J. Math. Anal. 41, 665707.
9. CarassoA. & ShenM.-C. 1977 On viscous fluid flow down an inclined plane and the development of roll waves. SIAM J. Appl. Math. 33, 399426.
10. DowsonD. & HigginsonG. R. 1966 Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication. Pergamon.
11. DresslerR. F. 1949 Mathematical solution of the problem of roll-waves in inclined open channels. Commun. Pure Appl. Math. 2, 149194.
12. DuklerA. E. & BerkelinO. P. 1952 Characteristics of flow in falling fluid films. Chem. Engng Prog. 48, 557563.
13. FriedmanS. J. & MillerC. O. 1941 Liquid films in the viscous flow region. Ind. Engng Chem. 33, 885891.
14. GaussC. F. 1829 Ueber ein allgemeines Grundgesetz der Mechanik. J. Reine Angew. Math. 4, 232235.
15. GrimleyS. S. 1945 Liquid flow conditions in packed towers. Trans. Inst. Chem. Engrs 23, 228235.
16. GuptaA. S. & RaiL. 1967 Stability of an elastico-viscous liquid film flowing down an inclined plane. Proc. Camb. Phil. Soc. Math. Phys. Sci. 63, 527536.
17. HuppertH. E. 1982a Flow and instability of a viscous current down a slope. Nature 300, 427429.
18. HuppertH. E. 1982b The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.
19. IvanilovY. P. 1962 Rolling waves in an inclined channel. USSR Comput. Math. Math. Phys. 1, 12351252.
20. JeffreysH. 1925 The flow of water in an inclined channel of rectangular section. Phil. Mag. 49, 793807.
21. JonesS. J. & ChewH. A. M. 1983 Creep of ice as a function of hydrostatic pressure. J. Phys. Chem. 87 (21), 40644066.
22. KeuleganG. H. & PattersonG. W. 1940 A criterion for instability in steep channels. Trans. AGU Part II 594596.
23. KirkbrideC. G. 1934a Heat transfer by condensing vapor on vertical tubes. Ind. Engng Chem. 26, 425428.
24. KirkbrideC. G. 1934b Heat transfer by condensing vapours on vertical tubes. Trans. Am. Inst. Chem. Engrs 30, 170186.
25. KondicL. & DiezJ. 2001 Pattern formation in gravity driven flow of thin films: constant flux flow. Phys. Fluids 13, 31683184.
26. ManC. S. & SunQ. X. 1987 On the significance of normal stresses effects in the flow of glaciers. J. Glaciol. 33, 268273.
27. MayerP. G. 1959 Roll waves and slug flows in inclined open channels. Proc. Am. Soc. Civ. Engrs 85, 99141.
28. McTigueD. F., PassmanS. L. & JonesS. J. 1985 Normal stress effect in the creep of ice. J. Glaciol. 31, 120126.
29. NusseltW. 1916 Die Oberflachenkondensation des Wasserdampfes. Z. Verein. Deutsch. Ing. 60, 541546, 569–575.
30. PatersonW. S. B. 1994 The Physics of Glaciers, third edition. Pergamon.
31. PerazzoC. A. & GrattonJ. 2003 Thin film of non-Newtonian fluid on an incline. Phys. Rev. E 67, 016307 1–6.
32. RajagopalK. R. 2006 On implicit constitutive theories for fluids. J. Fluid Mech. 550, 243249.
33. RajagopalK. R. & SaccomandiG. 2006 On internal constraints in continuum mechanics. Differ. Equ. Nonlinear Mech. 2006, 18572.
34. RajagopalK. R. & SrinivasaA. R. 2005 On the nature of constraints for continua undergoing dissipative processes. Proc. R. Soc. Lond. A 461, 27852795.
35. RajagopalK. R. & SzeriA. Z. 2003 On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication. Proc. R. Soc. A 459, 27712786.
36. SaccomandiG. & VergoriL. 2010 Piezo-viscous flows over an inclined surface. Q. Appl. Math. 68, 747763.
37. SchoofC. & HindmarshR. C. A. 2010 Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math. 63, 73114.
38. SilviN. & DussanE. B. 1985 On the rewetting of an inclined solid surface by a liquid. Phys. Fluids 28, 57.
39. StokesG. G. 1845 On the theories of the internal friction of fluids in motion, and motion of elastic solids. Trans. Camb. Phil. Soc. 8, 287305.
40. SzeriA. Z. 1998 Fluid Film Lubrication: Theory and Design. Cambridge University Press.
41. YihC. S. 1955 Stability of parallel laminar flow with a free surface. (ed. NaghdiP. M. ). In Proceedings of the Second U.S. National Congress of Applied Mechanics 623628.
42. YihC. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.
43. YihC. S. 1965 Stability of a non-Newtonian liquid film flowing down an inclined plane. Phys. Fluids 8, 12571262.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 160 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.