Skip to main content
    • Aa
    • Aa

Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water


Non-Oberbeck–Boussinesq (NOB) effects on the flow organization in two-dimensional Rayleigh–Bénard turbulence are numerically analysed. The working fluid is water. We focus on the temperature profiles, the centre temperature, the Nusselt number and on the analysis of the velocity field. Several velocity amplitudes (or Reynolds numbers) and several kinetic profiles are introduced and studied; these together describe the various features of the rather complex flow organization. The results are presented both as functions of the Rayleigh number Ra (with Ra up to 108) for fixed temperature difference Δ between top and bottom plates and as functions of Δ (‘non-Oberbeck–Boussinesqness’) for fixed Ra with Δ up to 60K. All results are consistent with the available experimental NOB data for the centre temperature Tc and the Nusselt number ratio NuNOB/NuOB (the label OB meaning that the Oberbeck–Boussinesq conditions are valid). For the temperature profiles we find – due to plume emission from the boundary layers – increasing deviations from the extended Prandtl–Blasius boundary layer theory presented in Ahlers et al. (J. Fluid Mech., vol. 569, 2006, p. 409) with increasing Ra, while the centre temperature itself is surprisingly well predicted by that theory. For given non-Oberbeck–Boussinesqness Δ, both the centre temperature Tc and the Nusselt number ratio NuNOB/NuOB only weakly depend on Ra in the Ra range considered here.

Beyond Ra ≈ 106 the flow consists of a large diagonal centre convection roll and two smaller rolls in the upper and lower corners, respectively (‘corner flows’). Also in the NOB case the centre convection roll is still characterized by only one velocity scale. In contrast, the top and bottom corner flows are then of different strengths, the bottom one being a factor 1.3 faster (for Δ = 40K) than the top one, due to the lower viscosity in the hotter bottom boundary layer. Under NOB conditions the enhanced lower corner flow as well as the enhanced centre roll lead to an enhancement of the volume averaged energy based Reynolds number of about 4% to 5% for Δ = 60K. Moreover, we find , with β the thermal expansion coefficient and Tm the arithmetic mean temperature between top and bottom plate temperatures. This corresponds to the ratio of the free fall velocities at the respective temperatures. By artificially switching off the temperature dependence of β in the numerics, the NOB modifications of ReE is less than 1% even at Δ = 60K, revealing the temperature dependence of the thermal expansion coefficient as the main origin of the NOB effects on the global Reynolds number in water.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Ahlers , F. Fontenele Araujo , D. Funfschilling , S. Grossmann & D. Lohse 2007 Non-Oberbeck–Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 054501.

G. Ahlers , S. Grossmann & D. Lohse 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503538.

G. Amati , K. Koal , F. Massaioli , K. R. Sreenivasan & R. Verzicco 2005 Turbulent thermal convection at high Rayleigh numbers for a constant-Prandtl-number fluid under Boussinesq conditions. Phys. Fluids 17, 121701.

A. A. Amsden & F. H. Harlow 1970 A simplified mac technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322325.

S. Ashkenazi & V. Steinberg 1999 High Rayleigh number turbulent convection in a gas near the gas–liquid critical point. Phys. Rev. Lett. 83, 36413644.

A. Belmonte , A. Tilgner & A. Libchaber 1993 Boundary layer length scales in thermal turbulence. Phys. Rev. Lett. 70, 40474070.

A. Belmonte , A. Tilgner & A. Libchaber 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50, 269279.

R. Benzi 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95, 024502.

E. Brown & G. Ahlers 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.

E. Brown , D. Funfschilling & G. Ahlers 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.

C. Canuto , M. Y. Hussaini , A. Quarteroni & T. A. Zang 1988 Spectral Methods in Fluid Dynamics. Springer.

X. Chavanne , F. Chilla , B. Castaing , B. Hebral , B. Chabaud & J. Chaussy 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.

X. Chavanne , F. Chilla , B. Chabaud , B. Castaing & B. Hebral 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.

S. Ciliberto , S. Cioni & C. Laroche 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54, R5901R5904.

S. Ciliberto & C. Laroche 1999 Random roughness of boundary increases the turbulent convection scaling exponent. Phys. Rev. Lett. 82, 39984001.

E. E. DeLuca , J. Werne , R. Rosner & F. Cattaneo 1990 Numerical simulations of soft and hard turbulence – preliminary-results for 2-dimensional convection. Phys. Rev. Lett. 64, 2370.

F. Fontenele Araujo , S. Grossmann & D. Lohse 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084502.

S. Grossmann & D. Lohse 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.

S. Grossmann & D. Lohse 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.

S. Grossmann & D. Lohse 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.

G. Grötzbach 1983 Spatial resolution for direct numerical simulations of Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.

U. Hansen , D. A. Yuen & S. E. Kroening 1992 Mass and heat-transfer in strongly time-dependent thermal convection at infinite Prandtl number. Geophys. Astrophys. Fluid Dyn. 63, 6789.

F. H. Harlow & J. E. Welch 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.

H. Johnston & C. R. Doering 2009 Rayleigh–Bénard convection with imposed heat flux. Phys. Rev. Lett. 102, 064501.

T. Kajishima , S. Takiguchi , H. Hamasaki & Y. Miyake 2001 Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding. JSME Intl J. Ser. B 44, 526535.

S. Lam , X. D. Shang , S. Q. Zhou & K.-Q. Xia 2002 Prandtl number dependence of the viscous boundary layer and the Reynolds number in Rayleigh–Bénard convection. Phys. Rev. E 65, 066306.

J. Luijkx & J. Platten 1981 On the onset of free convection in a rectangular channel. J. Non-Equilib. Thermodyn. 6, 141158.

J. Niemela , L. Skrebek , K. R. Sreenivasan & R. Donnelly 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.

R. Peyret & T. D. Taylor 1983 Computational Methods for Fluid Flow. Springer.

X. L. Qiu , X. D. Shang , P. Tong & K.-Q. Xia 2004 Velocity oscillations in turbulent Rayleigh–Bénard convection. Phys. Fluids 16, 412423.

X. L. Qiu & K.-Q. Xia 1998 Viscous boundary layers at the sidewall of a convection cell. Phys. Rev. E 58, 486491.

P. E. Roche , B. Castaing , B. Chabaud & B. Hebral 2001 Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303.

P. E. Roche , B. Castaing , B. Chabaud & B. Hebral 2002 Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection. Europhys. Lett. 58, 693698.

J. Schmalzl , M. Breuer & U. Hansen 2004 On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 67, 390396.

K. R. Sreenivasan , A. Bershadski & J. J. Niemela 2002 Mean wind and its reversals in thermal convection. Phys. Rev. E 65, 056306.

K. Sugiyama , E. Calzavarini , S. Grossmann & D. Lohse 2007 Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh–Bénard convection in glycerol. Europhys. Lett. 80, 34002.

C. Sun , H.-D. Xi & K.-Q. Xia 2005 aAzimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.

C. Sun , K.-Q. Xia & P. Tong 2005 bThree-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.

J. Werne 1993 Structure of hard-turbulent convection in two-dimensions: numerical evidence. Phys. Rev. E 48, 10201035.

J. Werne , E. E. DeLuca , R. Rosner & F. Cattaneo 1991 Development of hard-turbulent convection in 2 dimensions – numerical evidence. Phys. Rev. Lett. 67, 3519.

X. Z. Wu & A. Libchaber 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 28332839.

K.-Q. Xia , C. Sun & S. Q. Zhou 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.

Y.-B. Xin & K.-Q. Xia 1997 Boundary layer length scales in convective turbulence. Phys. Rev. E 56, 30103015.

J. Zhang , S. Childress & A. Libchaber 1997 Non-Boussinesq effect: thermal convection with broken symmetry. Phys. Fluids 9, 10341042.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 97 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th June 2017. This data will be updated every 24 hours.