Skip to main content
×
Home
    • Aa
    • Aa

Flow regimes for fluid injection into a confined porous medium

  • Zhong Zheng (a1), Bo Guo (a2), Ivan C. Christov (a1) (a3), Michael A. Celia (a2) and Howard A. Stone (a1)...
Abstract
Abstract

We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated. The flow behaviour is summarized in a diagram with five distinct dynamical regimes: a nonlinear diffusion regime, a transition regime, a travelling wave regime, an equal-viscosity regime, and a rarefaction regime.

Copyright
Corresponding author
Email address for correspondence: hastone@princeton.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. M. Acton , H. E. Huppert  & M. G. Worster 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.

G. I. Barenblatt 1979 Similarity, Self-Similarity, and Intermediate Asymptotics. Consultants Bureau.

J. Bear 1972 Dynamics of Fluids in Porous Media. Elsevier.

S. E. Gasda , S. Bachu  & M. A. Celia 2004 Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46, 707720.

I. Gunn  & A. W. Woods 2011 On the flow of buoyant fluid injected into a confined, inclined aquifer. J. Fluid Mech. 672, 109129.

Y. Hallez  & J. Magnaudet 2009 A numerical investigation of horizontal viscous gravity currents. J. Fluid Mech. 630, 7191.

M. A. Hesse , F. M. Jr Orr  & H. A. Tchelepi 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.

M. A. Hesse , H. A. Tchelepi , B. J. Cantwell  & F. M. Jr Orr 2007 Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363383.

E. J. Hinch 1991 Perturbation Methods. Cambridge University Press.

G. M. Homsy 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.

H. E. Huppert 1982a Flow and instability of a viscous current down a slope. Nature 300, 427429.

H. E. Huppert 1982b The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.

H. E. Huppert  & A. W. Woods 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.

A. Kurganov  & E. Tadmor 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241282.

R. Lenormand , E. Touboul  & C. Zarcone 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165187.

R. J. LeVeque 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

J. R. Lister 1992 Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631653.

S. Lyle , H. E. Huppert , M. Hallworth , M. Bickle  & A. Chadwick 2005 Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293302.

C. W. MacMinn , M. L. Szulczewski  & R. Juanes 2010 $\text{CO}_{2}$ migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.

C. W. MacMinn , M. L. Szulczewski  & R. Juanes 2011 $\text{CO}_{2}$ migration in saline aquifers. Part 2. Combined capillary and solubility trapping. J. Fluid Mech. 688, 321351.

J. A. Neufeld , D. Vella , H. E. Huppert  & J. R. Lister 2011 Leakage from gravity currents in a porous medium. Part 1. A localized sink. J. Fluid Mech. 666, 391413.

J. M. Nordbotten  & M. A. Celia 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.

S. S. Pegler , H. E. Huppert  & J. A. Neufeld 2014 Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.

D. Pritchard 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.

J. W. Rottman  & J. E. Simpson 1983 Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95110.

P. G. Saffman  & G. I. Taylor 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.

S. Saha , D. Salin  & L. Talon 2013 Low Reynolds number suspension gravity currents. Eur. Phys. J. E 36, 10385.

J. O. Shin , S. B. Dalziel  & P. F. Linden 2004 Gravity currents produced by lock exchange. J. Fluid Mech. 521, 134.

S. M. Taghavi , K. Alba , T. Seon , K. Wielage-Burchard , D. M. Martinez  & I. A. Frigaard 2012 Miscible displacement flows in near-horizontal ducts at low Atwood number. J. Fluid Mech. 696, 175214.

S. M. Taghavi , T. Seon , D. M. Martinez  & I. A. Frigaard 2009 Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit. J. Fluid Mech. 639, 135.

D. Vella  & H. E. Huppert 2006 Gravity currents in a porous medium at an inclined plane. J. Fluid Mech. 555, 353362.

J. Verdon  & A. W. Woods 2007 Gravity-driven reacting flows in a confined porous aquifer. J. Fluid Mech. 588, 2941.

Y. C. Yortsos  & D. Salin 2006 On the selection principle for viscous fingering in porous media. J. Fluid Mech. 557, 225236.

Z. Zheng , I. C. Christov  & H. A. Stone 2014 Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. J. Fluid Mech. 747, 218246.

Z. Zheng , B. Soh , H. E. Huppert  & H. A. Stone 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 97 *
Loading metrics...

Abstract views

Total abstract views: 247 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th July 2017. This data will be updated every 24 hours.