Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T00:00:54.130Z Has data issue: false hasContentIssue false

Flow–acoustic resonance mechanism in tandem deep cavities coupled with acoustic eigenmodes in turbulent shear layers

Published online by Cambridge University Press:  05 April 2024

Peng Wang
Affiliation:
Turbomachinery Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
Sichang Jia
Affiliation:
Turbomachinery Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
Zheng He
Affiliation:
Turbomachinery Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
Chuangxin He
Affiliation:
Turbomachinery Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
Hyung Jin Sung
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
Yingzheng Liu*
Affiliation:
Turbomachinery Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, PR China
*
Email address for correspondence: yzliu@sjtu.edu.cn

Abstract

This study presents the interplay of flow and acoustics within tandem deep cavities, focusing on the resonance mechanism occurring between turbulent shear layers and acoustic eigenmodes. The arrangement inside the tandem deep cavities includes both close and remote configurations. A combined fully coupled and decoupled aeroacoustic simulation strategy was devised. Employing an advanced high-order spectral/hp element method in conjunction with implicit large eddy simulation, the nonlinear compressible Navier–Stokes equations were solved to acquire internal flow–acoustic resonant field. In parallel, the linearized Navier–Stokes equations were tackled to determine coherent shear layer perturbations with external acoustic forcing. Based on acoustic measurements, the mainstream Reynolds number approaches approximately $R{e_{in}} = {O}({10^5})$, where we identified the presence of frequency lock-in and a resonance range. Aeroacoustic noise sources were examined by implementing spectral proper orthogonal decomposition to decompose the pressure fields into hydrodynamic and acoustic components. As feedback intensified, the flow characteristics by the acoustic forcing effect and the flow-interactive effect were categorized according to the development of concurrent turbulent shear layers. Subsequently, the alternating and synchronous behaviours of concurrent shear layers resonated with the out-of-phase and in-phase acoustic eigenmodes were identified, and the corresponding large-scale counter-rotating vortex pairs and co-rotating vortex structures at the cavity entrances were extracted. The acoustic power generated by the Coriolis force was calculated using Howe's vortex-sound analogy, and the aeroacoustic energy transfer mechanism between large-scale shear layer vortices with acoustic eigenmodes was further explored. Finally, a linear response of coherent perturbations of the concurrent shear layers by external acoustic forcing was established. The amplification of flow in the streamwise direction toward the main duct led to the formation of coherent vortex structures, accompanied by separation bubbles into the main duct.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelmwgoud, M., Shaaban, M. & Mohany, A. 2020 Flow dynamics and azimuthal behavior of the self-excited acoustic modes in axisymmetric shallow cavities. Phys. Fluids 32 (11), 115109.CrossRefGoogle Scholar
Ahuja, K.K. & Mendoza, J. 1995 Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes. No. NAS 1.26: 4653.Google Scholar
Alenius, E., Åbom, M. & Fuchs, L. 2015 Large eddy simulations of acoustic-flow interaction at an orifice plate. J. Sound Vib. 345, 162177.CrossRefGoogle Scholar
Barbieri, R. & Barbieri, N. 2006 Finite element acoustic simulation based shape optimization of a muffler. Appl. Acoust. 67 (4), 346357.CrossRefGoogle Scholar
Boujo, E., Bauerheim, M. & Noiray, N. 2018 Saturation of a turbulent mixing layer over a cavity: response to harmonic forcing around mean flows. J. Fluid Mech. 853, 386418.CrossRefGoogle Scholar
Bourquard, C., Faure-Beaulieu, A. & Noiray, N. 2021 Whistling of deep cavities subject to turbulent grazing flow: intermittently unstable aeroacoustic feedback. J. Fluid Mech. 909, A19.CrossRefGoogle Scholar
Bruggeman, J.C., Hirschberg, A., van Dongen, M.E., Wijnands, A.P. & Gorter, J. 1991 Self-sustained aero-acoustic pulsations in gas transport systems: experimental study of the influence of closed side. J. Sound Vib. 150 (3), 371393.CrossRefGoogle Scholar
Cantwell, C.D., et al. 2015 Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205219.CrossRefGoogle Scholar
Dai, X. & Aurégan, Y. 2018 A cavity-by-cavity description of the aeroacoustic instability over a liner with a grazing flow. J. Fluid Mech. 852, 126145.CrossRefGoogle Scholar
Dai, X., Jing, X. & Sun, X. 2015 Flow-excited acoustic resonance of a Helmholtz resonator: discrete vortex model compared to experiments. Phys. Fluids 27 (5), 057102.CrossRefGoogle Scholar
D'Elia, M.E., Humbert, T. & Aurégan, Y. 2022 Linear investigation of sound-flow interaction along a corrugated plate. J. Sound Vib. 534, 117048.CrossRefGoogle Scholar
Doak, P.E. 1989 Momentum potential theory of energy flux carried by momentum fluctuations. J. Sound Vib. 131 (1), 6790.CrossRefGoogle Scholar
Du, L., Holmberg, A., Karlsson, M. & Åbom, M. 2016 Sound amplification at a rectangular T-junction with merging mean flows. J. Sound Vib. 367, 6983.CrossRefGoogle Scholar
Elder, S.A. 1980 Forced oscillations of a separated shear layer with application to cavity flow-tone effects. J. Acoust. Soc. Am. 67 (3), 774781.CrossRefGoogle Scholar
Faure-Beaulieu, A., Pedergnana, T. & Noiray, N. 2023 a Self-sustained azimuthal aeroacoustic modes. Part 2. Effect of a swirling mean flow on the modal dynamics. J. Fluid Mech. 971, A22.CrossRefGoogle Scholar
Faure-Beaulieu, A., Xiong, Y., Pedergnana, T. & Noiray, N. 2023 b Self-sustained azimuthal aeroacoustic modes. Part 1. Symmetry breaking of the mean flow by spinning waves. J. Fluid Mech. 971, A21.CrossRefGoogle Scholar
Forestier, N., Jacquin, L. & Geffroy, P. 2003 The mixing layer over a deep cavity at high-subsonic speed. J. Fluid Mech. 475, 101145.CrossRefGoogle Scholar
Gikadi, J., Föller, S. & Sattelmayer, T. 2014 Impact of turbulence on the prediction of linear aeroacoustic interactions: acoustic response of a turbulent shear layer. J. Sound Vib. 333 (24), 65486559.CrossRefGoogle Scholar
Hartmann, R. & Houston, P. 2006 Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: method formulation. Intl J. Numer. Anal. Model. 3 (1), 120.Google Scholar
Hirschberg, A. & Rienstra, S.W. 2004 An Introduction to Aeroacoustics. Eindhoven University of Technology, 31.Google Scholar
Ho, Y.W. & Kim, J.W. 2021 A wall-resolved large-eddy simulation of deep cavity flow in acoustic resonance. J. Fluid Mech. 917, A17.CrossRefGoogle Scholar
Howe, M.S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.CrossRefGoogle Scholar
Johnson, S.G. 2021 Notes on perfectly matched layers (PMLs). Preprint, arXiv:2108.05348.Google Scholar
Karniadakis, G. & Sherwin, S.J. 2005 Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press.CrossRefGoogle Scholar
Kirby, R.M. & Sherwin, S.J. 2006 Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling. Comput. Meth. Appl. Mech. Engng 195 (23–24), 31283144.CrossRefGoogle Scholar
Larchevêque, L., Sagaut, P., , T.H. & Comte, P. 2004 Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265301.CrossRefGoogle Scholar
Lumley, J.L. 2007 Stochastic Tools in Turbulence. Courier Corporation.Google Scholar
Mantič-Lugo, V. & Gallaire, F. 2016 Self-consistent model for the saturation mechanism of the response to harmonic forcing in the backward-facing step flow. J. Fluid Mech. 793, 777797.CrossRefGoogle Scholar
Meliga, P. 2017 Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description. J. Fluid Mech. 826, 503521.CrossRefGoogle Scholar
Mengaldo, G., De Grazia, D., Moxey, D., Vincent, P.E. & Sherwin, S.J. 2015 Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 5681.CrossRefGoogle Scholar
Mengaldo, G., Moxey, D., Turner, M., Moura, R.C., Jassim, A., Taylor, M., Peiro, J. & Sherwin, S. 2021 Industry-relevant implicit large-eddy simulation of a high-performance road car via spectral/hp element methods. SIAM Rev. 63 (4), 723755.CrossRefGoogle Scholar
Moura, R.C., Aman, M., Peiró, J. & Sherwin, S.J. 2020 Spatial eigenanalysis of spectral/hp continuous Galerkin schemes and their stabilisation via DG-mimicking spectral vanishing viscosity for high Reynolds number flows. J. Comput. Phys. 406, 109112.CrossRefGoogle Scholar
Moura, R.C., Sherwin, S.J. & Peiró, J. 2015 Linear dispersion–diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695710.CrossRefGoogle Scholar
Moxey, D., et al. 2020 Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods. Comput. Phys. Commun. 249, 107110.CrossRefGoogle Scholar
Nakiboğlu, G., Belfroid, S.P.C., Golliard, J. & Hirschberg, A. 2011 On the whistling of corrugated pipes: effect of pipe length and flow profile. J. Fluid Mech. 672, 78108.CrossRefGoogle Scholar
Nakiboğlu, G., Manders, H.B.M. & Hirschberg, A. 2012 Aeroacoustic power generated by a compact axisymmetric cavity: prediction of self-sustained oscillation and influence of the depth. J. Fluid Mech. 703, 163191.CrossRefGoogle Scholar
Okuyama, K., Tamura, A., Takahashi, S., Ohtsuka, M. & Tsubaki, M. 2012 Flow-induced acoustic resonance at the mouth of one or two side branches. Nucl. Engng Des. 249, 154158.CrossRefGoogle Scholar
Rowley, C.W., Colonius, T. & Basu, A.J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.CrossRefGoogle Scholar
Saad, Y. & Schultz, M.H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7 (3), 856869.CrossRefGoogle Scholar
Schmidt, O.T. & Colonius, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3), 10231033.CrossRefGoogle Scholar
Shaaban, A.A. & Ziada, S. 2018 a Fully developed building unit cavity source for long multiple shallow cavity configurations. Phys. Fluids 30 (8), 086105.CrossRefGoogle Scholar
Shaaban, A.A. & Ziada, S. 2018 b Acoustic response of multiple shallow cavities and prediction of self-excited acoustic oscillations. ASME J. Fluids Engng 140 (9), 091203.CrossRefGoogle Scholar
Tadmor, E. 1989 Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26 (1), 3044.CrossRefGoogle Scholar
Thornber, B. & Drikakis, D. 2008 Implicit large-eddy simulation of a deep cavity using high-resolution methods. AIAA J. 46 (10), 26342645.CrossRefGoogle Scholar
Tonon, D., Hirschberg, A., Golliard, J. & Ziada, S. 2011 a Aeroacoustics of pipe systems with closed branches. Intl J. Aeroacoust. 10 (2–3), 201275.CrossRefGoogle Scholar
Tonon, D., Willems, J.F.H. & Hirschberg, A. 2011 b Self-sustained oscillations in pipe systems with multiple deep side branches: prediction and reduction by detuning. J. Sound Vib. 330 (24), 58945912.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2016 Acoustic, hydrodynamic and thermal modes in a supersonic cold jet. J. Fluid Mech. 800, 387432.CrossRefGoogle Scholar
Wang, P., Deng, Y., Mao, Q., He, C. & Liu, Y. 2020 Phase-locking particle image velocimetry measurements of acoustic-driven flow interactions between tandem deep cavities. Phys. Fluids 32 (12), 125115.CrossRefGoogle Scholar
Yamouni, S., Sipp, D. & Jacquin, L. 2013 Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis. J. Fluid Mech. 717, 134165.CrossRefGoogle Scholar
Ziada, S., Bolduc, M. & Lafon, P. 2017 Flow-excited resonance of diametral acoustic modes in ducted rectangular cavities. AIAA J. 55 (11), 38173830.CrossRefGoogle Scholar
Ziada, S. & Bühlmann, E.T. 1992 Self-excited resonances of two side-branches in close proximity. J. Fluids Struct. 6 (5), 583601.CrossRefGoogle Scholar
Ziada, S. & Lafon, P. 2014 Flow-excited acoustic resonance excitation mechanism, design guidelines, and counter measures. Appl. Mech. Rev. 66 (1), 010802.CrossRefGoogle Scholar