Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T13:39:08.246Z Has data issue: false hasContentIssue false

Fluid flow over and through a regular bundle of rigid fibres

Published online by Cambridge University Press:  29 February 2016

Giuseppe A. Zampogna
Affiliation:
DICCA, Scuola Politecnica, Università di Genova, via Montallegro 1, 16145 Genova, Italy
Alessandro Bottaro*
Affiliation:
DICCA, Scuola Politecnica, Università di Genova, via Montallegro 1, 16145 Genova, Italy
*
Email address for correspondence: alessandro.bottaro@unige.it

Abstract

The interaction between a fluid flow and a transversely isotropic porous medium is described. A homogenized model is used to treat the flow field in the porous region, and different interface conditions, needed to match solutions at the boundary between the pure fluid and the porous regions, are evaluated. Two problems in different flow regimes (laminar and turbulent) are considered to validate the system, which includes inertia in the leading-order equations for the permeability tensor through a Oseen approximation. The components of the permeability, which characterize microscopically the porous medium and determine the flow field at the macroscopic scale, are reasonably well estimated by the theory, both in the laminar and the turbulent case. This is demonstrated by comparing the model’s results to both experimental measurements and direct numerical simulations of the Navier–Stokes equations which resolve the flow also through the pores of the medium.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angot, P., Bruneau, C. H. & Fabrie, P. 1999 A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497520.CrossRefGoogle Scholar
Auriault, J. L. 2009 On the domain of validity of Brinkman’s equation. Trans. Porous Med. 79 (2), 215223.Google Scholar
Battiato, I. 2012 Self-similarity in coupled Brinkman/Navier–Stokes flows. J. Fluid Mech. 699, 94114.Google Scholar
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1), 197207.Google Scholar
Breugem, W. P. & Boersma, B. J. 2005 Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17, 025103.Google Scholar
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2004 Direct numerical simulations of plane channel flow over a 3D cartesian grid of cubes. Appl. Porous Media (ICAPM 2004) 2735.Google Scholar
Brinkman, H. C. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1 (1), 2734.Google Scholar
Bruneau, C. H. & Mortazavi, I. 2008 Numerical modelling and passive flow control using porous media. Comput. Fluids 37 (5), 488498.Google Scholar
Carman, P. C. 1939 Permeability of saturated sands, soils and clays. J. Agric. Sci. 29 (2), 262273.Google Scholar
Carraro, T., Goll, C., Marciniak-Czochra, A. & Mikelić, A. 2013 Pressure jump interface law for the Stokes–Darcy coupling: confirmation by direct numerical simulations. flows. J. Fluid Mech. 732, 510536.Google Scholar
Carraro, T., Goll, C., Marciniak-Czochra, A. & Mikelić, A. 2015 Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Comput. Meth. Appl. Mech. Engng 292, 195220.Google Scholar
Chandesris, M. & Jamet, D. 2008 Jump conditions and surface-excess quantities at a fluid/porous interface: a multi-scale approach. Trans. Porous Med. 78, 419438.Google Scholar
Cimolin, F. & Discacciati, M. 2013 Navier–Stokes/Forchheimer models for filtration through porous media. Appl. Numer. Maths 72, 205224.Google Scholar
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont.Google Scholar
Davit, Y., Quintard, M., Bell, C. G., Byrne, H. M., Chapman, L. A. C., Kimpton, L. S., Lang, G. E., Oliver, J. M., Pearson, N. C., Waters, S. L. et al. 2013 Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare? Adv. Water Resour. 62, 178206.Google Scholar
Edwards, D. A., Shapiro, M., Bar-Yoseph, P. & Shapira, M. 1990 The influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylinders. Phys. Fluids 2 (1), 4555.Google Scholar
Ene, H. I. & Sánchez-Palencia, E. 1975 Equations et phénomènes de surface pour l’ écoulement dans un modèle de milieu poreux. J. Méc. 14, 73108.Google Scholar
Finnigan, J. J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.Google Scholar
Firdaouss, M., Guermond, J. & Le Quéré, P. 1997 Nonlinear correction to Darcy’s law at low Reynolds numbers. J. Fluid Mech. 343, 331350.Google Scholar
Ghisalberti, M. & Nepf, H. M. 2004 The limited growth of vegetated shear layers. Water Resour. Res. 40 (7), 112.Google Scholar
Ghisalberti, M. & Nepf, H. M. 2006 The structure of the shear layer over rigid and flexible canopies. Environ. Fluid Mech. 6 (3), 277301.Google Scholar
Ghisalberti, M. & Nepf, H. M. 2009 Shallow flows over a permeable medium: the hydrodynamics of submerged aquatic canopies. Trans. Porous Med. 78 (2), 309326.Google Scholar
Givler, R. C. & Altobelli, S. A. 1994 A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid Mech. 258, 355370.CrossRefGoogle Scholar
Gray, W. G. 1975 A derivation of the equations for multi-phase transport. Chem. Engng Sci. 30 (2), 229233.Google Scholar
Gustafsson, J. & Protas, B. 2013 On Oseen flows for large Reynolds numbers. Theor. Comput. Fluid Dyn. 27 (5), 665680.Google Scholar
Hill, A. A. & Straughan, B. 2008 Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 603, 137149.Google Scholar
Jackson, G. W. & James, D. F. 1986 The permeability of fibrous porous media. Can. J. Chem. Engng 64 (3), 364374.Google Scholar
Jäger, W. & Mikelić, A.1996 On the boundary conditions at the contact interface between a porous medium and a free fluid. Annali Scuola Normale Superiore di Pisa, Classe di Scienze-Serie IV, vol. 23, pp. 403–465.Google Scholar
Jäger, W. & Mikelić, A. 2000 On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Maths 60 (4), 11111127.Google Scholar
James, D. F. & Davis, A. M. J. 2001 Flow at the interface of a model fibrous porous medium. J. Fluid Mech. 426, 4772.Google Scholar
Jamet, D. & Chandesris, M. 2009 On the intrinsic nature of jump coefficients at the interface between a porous medium and a free fluid region. Intl J. Heat Mass Transfer 52, 289300.Google Scholar
Kaviany, M. 1995 Principles of Heat Transfer in Porous Media. Springer.Google Scholar
Kuttanikkad, S. P.2009 Pore-scale direct numerical simulation of flow and transport in porous media. PhD thesis, Ruprecht-Karls-Universität Ruprecht-Karls-Universität, Heidelberg, Germany.Google Scholar
Le Bars, M. & Worster, M. 2006 Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550 (1), 149173.Google Scholar
Marciniak-Czochra, A. & Mikelić, A. 2012 Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization. Multiscale Model. Simul. 10 (2), 285305.Google Scholar
Matsumura, Y. & Jackson, T. L. 2014 Numerical simulation of fluid flow through random packs of cylinders using immersed boundary method. Phys. Fluids 26 (4), 043602.Google Scholar
Mei, C. C. & Auriault, J. L. 1991 The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647663.Google Scholar
Mei, C. C. & Vernescu, B. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific.Google Scholar
Milton, G. W. 2004 The Theory of Composites. Cambridge University Press.Google Scholar
Mityushev, V. & Adler, P. M. 2002a Longitudinal permeability of spatially periodic rectangular arrays of circular cylinders I: a single cylinder in the unit cell. Z. Angew. Math. Phys. 82 (5), 335346.Google Scholar
Mityushev, V. & Adler, P. M. 2002b Longitudinal permeability of spatially periodic rectangular arrays of circular cylinders II: an arbitrary distribution of cylinders inside the unit cell. Z. Angew. Math. Phys. 53 (3), 486514.Google Scholar
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.Google Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I: theoretical development. Intl J. Heat Mass Transfer 38 (14), 26352646.Google Scholar
Perot, J. B. 1993 An analysis of the fractional step method. J. Comput. Phys. 108, 5158.Google Scholar
Quarteroni, A. & Valli, A. 1999 Domain Decomposition Methods for Partial Differential Equations. Oxford University Press.Google Scholar
Quintard, M. & Whitaker, S. 1994 Transport in ordered and disordered porous media II: generalized volume averaging. Trans. Porous Med. 14 (2), 179206.Google Scholar
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78, 351382.Google Scholar
Sadiq, T. A. K., Advani, S. G. & Parnas, R. S. 1995 Experimental investigation of transverse flow through aligned cylinders. Intl J. Multiphase Flow 21 (5), 755774.Google Scholar
Saffman, P. G. 1971 Boundary condition at the surface of a porous medium. Stud. Appl. Maths 50 (2), 93101.Google Scholar
Sahraoui, M. & Kaviany, M. 1992 Slip and no–slip velocity boundary conditions at interface of porous, plain media. Intl J. Heat Mass Transfer 35 (4), 927943.Google Scholar
Sangani, A. S. & Yao, C. 1988 Transport processes in random arrays of cylinders. II: viscous flow. Phys. Fluids 31 (9), 24352444.Google Scholar
Skartsis, L. & Kardos, J. L. 1990 The Newtonian permeability and consolidation of oriented carbon fiber beds. In Proceedings of the American Society for Composites. Fifth Technical Conference: Composite Materials in Transition. East Lansing, MI, pp. 548556.Google Scholar
Skjetne, E. & Auriault, J. L. 1999 New insights on steady, non-linear flow in porous media. Eur. J. Mech. (B/Fluids) 18 (1), 131145.Google Scholar
Tamayol, A. & Bahrami, M. 2009 Analytical determination of viscous permeability of fibrous porous media. Intl J. Heat Mass Transfer 52 (9), 24072414.Google Scholar
van der Westhuizen, J. & du Plessis, J. P. 1996 An attempt to quantify fibre bed permeability utilizing the phase average Navier–Stokes equation. Composites A 27 (4), 263269.Google Scholar
Whitaker, S. 1986 Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Med. 1 (1), 325.Google Scholar
Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Trans. Porous Med. 25 (1), 2761.Google Scholar
Whitaker, S. 1998 The Method of Volume Averaging. Jacob Bear, Technion – Israel Institute of Technology.Google Scholar
Yazdchi, K., Srivastava, S. & Luding, S. 2011 Microstructural effects on the permeability of periodic fibrous porous media. Intl J. Multiphase Flow 37 (8), 956966.Google Scholar
Zampogna, G. A.2016 Homogenized-based modeling of flows over and through poroelastic media, PhD thesis, University of Genova, Italy.Google Scholar
Zick, A. A. & Homsy, G. M. 1982 Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 1326.Google Scholar