Skip to main content Accessibility help
×
×
Home

The fluid trampoline: droplets bouncing on a soap film

  • TRISTAN GILET (a1) and JOHN W. M. BUSH (a2)
Abstract

We present the results of a combined experimental and theoretical investigation of droplets falling onto a horizontal soap film. Both static and vertically vibrated soap films are considered. In the static case, a variety of behaviours were observed, including bouncing, crossing and partial coalescence. A quasi-static description of the soap film shape yields a force–displacement relation that provides excellent agreement with experiment, and allows us to model the film as a nonlinear spring. This approach yields an accurate criterion for the transition between droplet bouncing and crossing. Moreover, it allows us to rationalize the observed constancy of the contact time and scaling for the coefficient of restitution in the bouncing states. On the vibrating film, a variety of bouncing behaviours were observed, including simple and complex periodic states, multi-periodicity and chaos. A simple theoretical model is developed that captures the essential physics of the bouncing process, reproducing all observed bouncing states. The model enables us to rationalize the observed coexistence of multiple periodic bouncing states by considering the dependence of the energy transferred to the droplet on the phase of impact. Quantitative agreement between model and experiment is deduced for simple periodic modes, and qualitative agreement for more complex periodic and chaotic bouncing states. Analytical solutions are deduced in the limit of weak forcing and dissipation, yielding insight into the contact time and periodicity of the bouncing states.

Copyright
Corresponding author
Email address for correspondence: bush@math.mit.edu
References
Hide All
Ambravaneswaran, B., Subramani, H. J., Phillips, S. D. & Basaran, O. A. 2004 Dripping–jetting transitions in a dripping faucet. Phys. Rev. Lett. 93, 034501.
Biance, A. L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 47.
Blanchette, F. & Bigioni, T. 2006 Partial coalescence of drops at liquid interfaces. Nature Physics 2, 254.
Boudaoud, A., Couder, Y. & Ben Amar, M. 1999 Self-adaptation in vibrating soap films. Phys. Rev. Lett. 82 (19), 3847.
Charles, G. E. & Mason, S. G. 1960 a The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15, 236.
Charles, G. E. & Mason, S. G. 1960 b The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15, 105.
Chen, X., Mandre, S. & Feng, J. J. 2006 Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18, 051705.
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199.
Couder, Y. & Fort, E. 2006 Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.
Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005 a From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005 b Walking and orbiting bouncing droplets. Nature 437, 208.
Coullet, P., Mahadevan, L. & Riera, C. S. 2005 Hydrodynamical models for the chaotic dripping faucet. J. Fluid Mech. 526, 1.
Courbin, L., Marchand, A., Vaziri, A., Ajdari, A. & Stone, H. 2006 Impact dynamics for elastic membranes. Phys. Rev. Lett. 97, 244301.
Courbin, L. & Stone, H. 2006 Impact, puncturing and the self-healing of soap films. Phys. Fluids 18, 091105.
Dell'Aversana, P., Banavar, J. R. & Koplik, J. 1996 Suppression of coalescence by shear and temperature gradients. Phys. Fluids 8, 15.
Dorbolo, S., Terwagne, D., Vandewalle, N. & Gilet, T. 2008 Resonant and rolling droplets. New J. Phys. 10, 113021.
Gilet, T. & Bush, J. W. M. Chaotic bouncing of a droplet on a soap film. Phys. Rev. Lett. 102, 014501.
Gilet, T., Mulleners, K., Lecomte, J.-P., Vandewalle, N. & Dorbolo, S. 2007 a Critical parameters for the partial coalescence of a droplet. Phys. Review E 75, 036303.
Gilet, T., Terwagne, D., Vandewalle, N. & Dorbolo, S. 2008 Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett. 100, 167802.
Gilet, T., Vandewalle, N. & Dorbolo, S. 2007 b Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys. Rev. E 76, 035302.
Graff, K. F. 1975 Wave Motion in Elastic Solids. Oxford University Press.
Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 73, 027301.
Jayaratne, O. W. & Mason, B. J. 1964 The coalescence and bouncing of water drops at an air–water interface. Proc. R. Soc. London, Ser. A 280, 545.
Kowalik, Z. J., Franaszek, M. & Pieranski, P. 1988 Self-reanimating chaos in the bouncing-ball system. Phys. Rev. A 37 (10).
Landau, L. & Lifchitz, E. 1959 Fluid mechanics. In Course on Theoretical Physics, vol. 6. Addison Wesley.
Legendre, D., Daniel, C. & Guiraud, P. 2005 Experimental study of a drop bouncing on a wall in a liquid. Phys. Fluids 17, 097105.
LeGoff, A., Courbin, L., Stone, H. A. & Quéré, D. 2008 Energy absorption in a bamboo foam. Europhys. Lett. 84, 36001.
LeGrand-Piteira, N., Brunet, P., Lebon, L. & Limat, L. 2006 Propagative wave pattern on a falling liquid curtain. Phys. Rev. E 74, 026305.
Lieber, S., Hendershott, M., Pattanaporkratana, A. & Maclennan, J. 2007 Self-organization of bouncing oil drops: two-dimensional lattices and spinning clusters. Phys. Rev. E 75, 056308.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130.
Mahajan, L. 1930 The effect of the surrounding medium on the life of liquid drops floating on the same liquid surface. Phil. Mag 10, 383.
McLaughlin, J. B. 1981 Period-doubling bifurcations and chaotic motion for a parametrically forced pendulum. J. Stat. Physics 24 (2), 375.
Mehta, A. & Luck, J. M. 1990 Novel temporal behavior of a nonlinear dynamical system: the completely inelastic bouncing ball. Phys. Rev. Lett. 65 (4), 393.
Neitzel, G. P. & Dell'Aversana, P. 2002 Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid Mech. 34, 267.
Okumura, K., Chevy, F., Richard, D., Quéré, D. & Clanet, C. 2003 Water spring: a model for bouncing drops. Europhys. Lett. 62 (2), 237243.
Pan, K. L. & Law, C. K. 2007 Dynamics of droplet–film collision. J. Fluid Mech. 587, 1.
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85.
Protière, S., Couder, Y., Fort, E. & Boudaoud, A. 2005 The self-organisation of surface waves sources. J. Phys. Cond. Mat. 17, S3529.
Richard, D., Clanet, C. & Quéré, D. 2002 Contact time of a bouncing drop. Nature 417, 811.
Richard, D. & Quéré, D. 2000 Bouncing water drops. Europhys. Lett. 50 (6), 769.
Shaw, R. 1984 The Dripping Faucet as a Model Chaotic System. Aerial Press.
Sparrow, C. 1982 The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer.
Squires, T. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381.
Strogatz, S. 1994 Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry and Engineering. Perseus Books.
Taylor, G. I. & Howarth, L. 1959 The dynamics of thin sheets of fluid. I. Water bells. Proc. Roy. Soc. A 253, 289.
Taylor, G. I. & Michael, D. H. 1973 On making holes in a sheet of fluid. J. Fluid Mech. 58, 625.
Terwagne, D., Vandewalle, N. & Dorbolo, S. 2007 Lifetime of a bouncing droplet. Phys. Rev. E 76, 056311.
Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12 (6), 1265.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed