Skip to main content Accessibility help
×
×
Home

Flutter instability of a thin flexible plate in a channel

  • Kourosh Shoele (a1) and Rajat Mittal (a1)

Abstract

The stability of a thin flexible plate confined inside an inviscid two-dimensional channel is examined using a nonlinear eigenvalue analysis method. A new Green’s function for the vortex wake of the flexible plate inside the channel, as well as its rapidly convergent series approximation, is proposed. Comparison with a fully coupled Navier–Stokes fluid–structure interaction model indicates that the current inviscid model successfully predicts the flutter boundary for a confined flexible plate. The analysis also shows that confinement has a destabilizing effect on heavy plates. Furthermore, as the confinement is increased, the oscillating frequency of the plate increases and new peaks appear in its stability curve. Asymmetric placement of the plate within the channel, especially when the plate is very close to one wall, also modifies the stability curve of the system by shifting the mode transition points toward smaller fluid-to-plate inertia ratios. Our study suggests that the degree of confinement and asymmetric placement of the plate in the channel could be used to alter the flutter instability of the plate, and to adjust the frequency of flutter.

Copyright

Corresponding author

Email address for correspondence: mittal@jhu.edu

References

Hide All
Abderrahmane, H. A., Païdoussis, M. P., Fayed, M. & Dick Ng, H. 2012 Nonlinear dynamics of silk and mylar flags flapping in axial flow. J. Wind Engng Ind. Aerodyn. 107, 225236.
Alben, S. 2008a The flapping-flag instability as a nonlinear eigenvalue problem. Phys. Fluids 20 (10), 104106.
Alben, S. 2008b Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355380.
Alben, S. 2015 Flag flutter in inviscid channel flow. Phys. Fluids 27 (3), 033603.
Alben, S. & Shelley, M. J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100 (7), 074301.
Argentina, M. & Mahadevan, L. 2005 Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci. USA 102 (6), 18291834.
Auregan, Y. & Depollier, C. 1995 Snoring: linear stability analysis and in-vitro experiments. J. Sound Vib. 188 (1), 3953.
Backus, J. 2005 Small-vibration theory of the clarinet. J. Acoust. Soc. Am. 35 (3), 305313.
Balint, T. S. & Lucey, A. D. 2005 Instability of a cantilevered flexible plate in viscous channel flow. J. Fluids Struct. 20 (7), 893912.
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.
Dalmont, J. P. & Frappe, C. 2007 Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments. J. Acoust. Soc. Am. 122 (2), 11731179.
Dessi, D. & Mazzocconi, S. 2015 Aeroelastic behavior of a flag in ground effect. J. Fluids Struct. 55, 303323.
Doaré, O., Mano, D. & Ludena, J. C. B. 2011a Effect of spanwise confinement on flag flutter: experimental measurements. Phys. Fluids 23 (11), 111704.
Doaré, O., Sauzade, M. & Eloy, C. 2011b Flutter of an elastic plate in a channel flow: confinement and finite-size effects. J. Fluids Struct. 27 (1), 7688.
Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97106.
Eloy, C., Souilliez, C. & Schouveiler, L. 2007 Flutter of a rectangular plate. J. Fluids Struct. 23 (6), 904919.
Gradshteyn, I. S. & Ryzhik, I. M. 2014 Table of Integrals, Series, and Products. Elsevier Science.
Greengard, L. 1990 Potential flow in channels. SIAM J. Sci. Stat. Comput. 11 (4), 603620.
Guo, C. Q. & Païdoussis, M. P. 2000a Analysis of hydroelastic instabilities of rectangular parallel-plate assemblies. J. Press. Vessel Technol. 122 (4), 502508.
Guo, C. Q. & Païdoussis, M. P. 2000b Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. Trans. ASME J. Appl. Mech. 67 (1), 171176.
Herrault, F., Hidalgo, P. A., Ji, C. H., Glezer, A. & Allen, M. G. 2012 Cooling performance of micromachined self-oscillating reed actuators in heat transfer channels with integrated diagnostics. In Proceedings of the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 12171220. IEEE.
Howell, R. M., Lucey, A. D., Carpenter, P. W. & Pitman, M. W. 2009 Interaction between a cantilevered-free flexible plate and ideal flow. J. Fluids Struct. 25 (3), 544566.
Huang, L. 1995 Flutter of cantilevered plates in axial flow. J. Fluids Struct. 9 (2), 127147.
Jaiman, R. K., Parmar, M. K. & Gurugubelli, P. S. 2014 Added mass and aeroelastic stability of a flexible plate interacting with mean flow in a confined channel. Trans. ASME J. Appl. Mech. 81 (4), 041006.
Kim, G. & Davis, D. C. 1995 Hydrodynamic instabilities in flat-plate-type fuel assemblies. Nucl. Engng Des. 158 (1), 117.
Kornecki, A., Dowell, E. H. & O’Brien, J. 1976 On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47 (2), 163178.
Lighthill, J. 1975 Mathematical Biofluiddynamics, vol. 17. SIAM.
Michelin, S. & Llewellyn Smith, S. G. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21 (7), 071902.
Michelin, S., Llewellyn Smith, S. G. & Glover, B. J. 2008 Vortex shedding model of a flapping flag. J. Fluid Mech. 617, 110.
Michelin, S. & Smith, S. G. L. 2009 Linear stability analysis of coupled parallel flexible plates in an axial flow. J. Fluids Struct. 25 (7), 11361157.
Miller, D. R. 1960 Critical flow velocities for collapse of reactor parallel-plate fuel assemblies. J. Eng. Power 82 (2), 8391.
Muskhelishvili, N. I. & Radok, J. R. M. 2008 Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. Dover.
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.
Shoele, K. & Mittal, R. 2014 Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer. Phys. Fluids 26 (12), 127103.
Shoele, K. & Zhu, Q. 2012 Leading edge strengthening and the propulsion performance of flexible ray fins. J. Fluid Mech. 693, 402432.
Shoele, K. & Zhu, Q. 2013 Performance of a wing with nonuniform flexibility in hovering flight. Phys. Fluids 25, 041901.
Sommerfeldt, S. D. & Strong, W. J. 1988 Simulation of a player clarinet system. J. Acoust. Soc. Am. 83 (5), 19081918.
Tang, D. M., Yamamoto, H. & Dowell, E. H. 2003 Flutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flow. J. Fluids Struct. 17 (2), 225242.
Tetlow, G. A. & Lucey, A. D. 2009 Motions of a cantilevered flexible plate in viscous channel flow driven by a constant pressure drop. Commun. Numer. Meth. Engng 25 (5), 463482.
Theodorsen, T.1935 General theory of aerodynamic instability and the mechanism of flutter, NACA Tech. Rep. 496, US National Advisory Committee for Aeronautics, Langley, VA.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed