Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T17:46:16.584Z Has data issue: false hasContentIssue false

Formation, evolution and scaling of plasma synthetic jets

Published online by Cambridge University Press:  20 December 2017

Haohua Zong*
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, Netherlands
Marios Kotsonis
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, Netherlands
*
Email address for correspondence: H.Zong-1@tudelft.nl

Abstract

Plasma synthetic jet actuators (PSJAs), capable of producing high-velocity pulsed jets at high frequency, are well suited for high-Reynolds-number subsonic and supersonic flow control. The effects of energy deposition and actuation frequency on the formation and evolution characteristics of plasma synthetic jets (PSJs) are investigated in detail by high-speed phase-locked particle imaging velocimetry (PIV). Increasing jet intensity with energy deposition is mainly contributed by the increasing peak jet velocity ($U_{p}$), while decreasing jet intensity with actuation frequency is attributed to both the reduced cavity density (primary factor) and the shortened jet duration (secondary factor). The total energy efficiency of the considered PSJA ($O(0.01\,\%)$) reduces monotonically with increasing frequency, while the time-averaged thrust produced by the PSJA is positively proportional to both the deposition energy and the frequency. A simplified theoretical model is derived and reveals a scaling power law between the peak jet velocity and the non-dimensional deposition energy (exponent $1/3$). The propagation velocity of the vortex ring attached at the jet front shows a non-monotonic behaviour of initial sharp increase and subsequent mild decay. The peak values for both the propagation velocity and the circulation of the front vortex ring are reached approximately two exit diameters away from the exit. Finally, analysis of the time-averaged flow fields of the issuing PSJ indicates that the axial decay rate of the centreline velocity is proportional to the actuation frequency whereas it is invariant with the energy deposition. The jet spreading rate of the PSJ is found to be higher than steady jets but lower than piezoelectric synthetic jets. Similarly, the entrainment coefficients of the PSJ are found to be twice as high as the values for comparable steady jets.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. G., Harris, F. K., Spoor, M., Boyland, S. R., Farrell, T. & Raines, D. 2016 Active flow control (AFC) and insect accretion and mitigation (IAM) system design and integration on the Boeing 757 ecoDemonstrator. In 16th AIAA Aviation Technology, Integration, and Operations Conference, p. 3746. AIAA.Google Scholar
Amitay, M., Smith, D. R., Kibens, V., Parekh, D. E. & Glezer, A. 2001 Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39 (3), 361370.Google Scholar
Anderson, K. V. & Knight, D. D. 2012 Plasma jet for flight control. AIAA J. 50 (9), 18551872.Google Scholar
Belinger, A., Hardy, P., Barricau, P., Cambronne, J. P. & Caruana, D. 2011 Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator. J. Phys. D 44 (36), 365201.Google Scholar
Belinger, A., Naudé, N., Cambronne, J. P. & Caruana, D. 2014 Plasma synthetic jet actuator: electrical and optical analysis of the discharge. J. Phys. D 47 (34), 345202.Google Scholar
Braithwaite, N. S. J. 2000 Introduction to gas discharges. Plasma Sources Sci. Technol. 9 (4), 517.10.1088/0963-0252/9/4/307Google Scholar
van Buren, T., Whalen, E. & Amitay, M. 2016 Achieving a high-speed and momentum synthetic jet actuator. J. Aerosp. Engng 29 (2), 04015040.Google Scholar
Cantwell, B. J. 1986 Viscous starting jets. J. Fluid Mech. 173, 159189.Google Scholar
Cater, J. E. & Soria, J. 2002 The evolution of round zero-net-mass-flux jets. J. Fluid Mech. 472, 167200.Google Scholar
Cattafesta, L. N. III & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.Google Scholar
Chang, Y. K. & Vakili, A. D. 1995 Dynamics of vortex rings in crossflow. Phys. Fluids 7 (7), 15831597.Google Scholar
Chedevergne, F., Léon, O., Bodoc, V. & Caruana, D. 2015 Experimental and numerical response of a high-Reynolds-number jet to a plasma synthetic jet actuator. Intl J. Heat Fluid Flow 56, 115.Google Scholar
Chiatto, M., Capuano, F., Coppola, G. & de Luca, L. 2017 LEM characterization of synthetic jet actuators driven by piezoelectric element: a review. Sensors 17 (6), 1216.Google Scholar
Chiatto, M. & de Luca, L. 2017 Numerical and experimental frequency response of plasma synthetic jet actuators. In 55th AIAA Aerospace Sciences Meeting, p. 1884. AIAA.Google Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.Google Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.Google Scholar
Crittenden, T. M. & Glezer, A. 2006 A high-speed, compressible synthetic jet. Phys. Fluids 18 (1), 017107.Google Scholar
Crittenden, T. M., Glezer, A., Funk, R. & Parekh, D. 2001 Combustion-driven jet actuators for flow control. In 15th AIAA Computational Fluid Dynamics Conference, p. 2768. AIAA.Google Scholar
Cybyk, B. Z., Wilkerson, J. T., Grossman, K. R. & Van Wie, D. M. 2003 Computational assessment of the SparkJet flow control actuator. In 33rd AIAA Fluid Dynamics Conference and Exhibit, p. 3711. AIAA.Google Scholar
Gad-el-Hak, M., Pollard, A. & Bonnet, J. P.(Eds) 2003 Flow Control: Fundamentals and Practices, vol. 53. Springer.Google Scholar
Gallas, Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M. & Cattafesta, L. 2003 Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J. 41 (2), 240247.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.Google Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34 (1), 503529.Google Scholar
Golbabaei-Asl, M., Knight, D. & Wilkinson, S. 2015 Novel technique to determine SparkJet efficiency. AIAA J. 53 (2), 501504.Google Scholar
Grossman, K., Cybyk, B. Z. & Vanwie, D. 2003 SparkJet actuators for flow control. In 41st Aerospace Sciences Meeting and Exhibit, p. 57. AIAA.Google Scholar
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.Google Scholar
Johari, H. & Paduano, R. 1997 Dilution and mixing in an unsteady jet. Exp. Fluids 23 (4), 272280.Google Scholar
Ko, H. S., Haack, S. J., Land, H. B., Cybyk, B., Katz, J. & Kim, H. J. 2010 Analysis of flow distribution from high-speed flow actuator using particle image velocimetry and digital speckle tomography. Flow Meas. Instrum. 21 (4), 443453.Google Scholar
Laurendeau, F., Chedevergne, F. & Casalis, G. 2014 Transient ejection phase modeling of a plasma synthetic jet actuator. Phys. Fluids 26 (12), 125101.Google Scholar
Laurendeau, F., Léon, O., Chedevergne, F., Senoner, J.-M. & Casalis, G. 2017 Particle image velocimetry experiment analysis using large-eddy simulation: application to plasma actuators. AIAA J. 55 (11), 37673780.Google Scholar
de Luca, L., Girfoglio, M. & Coppola, G. 2014 Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J. 52 (8), 17331748.Google Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.Google Scholar
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 234, No. 1196, pp. 123. The Royal Society.Google Scholar
Narayanaswamy, V., Raja, L. L. & Clemens, N. T. 2010 Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control. AIAA J. 48 (2), 297305.Google Scholar
Narayanaswamy, V., Raja, L. L. & Clemens, N. T. 2012 Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys. Fluids 24 (7), 076101.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Popkin, S. H., Cybyk, B. Z., Foster, C. H. & Alvi, F. S. 2016 Experimental estimation of SparkJet efficiency. AIAA J. 54 (6), 18311845.Google Scholar
Ragni, D., Schrijer, F., van Oudheusden, B. W. & Scarano, F. 2011 Particle tracer response across shocks measured by PIV. Exp. Fluids 50 (1), 5364.Google Scholar
Reedy, T. M., Kale, N. V., Dutton, J. C. & Elliott, G. S. 2013 Experimental characterization of a pulsed plasma jet. AIAA J. 51 (8), 20272031.Google Scholar
Rekalić, M. & Vukanović, V. 1974 Temperature distribution in a dc free burning arc in nitrogen with and without addition of Li2CO3 . Appl. Spectrosc. 28 (3), 244246.Google Scholar
Samimy, M., Kim, J. H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.Google Scholar
Sary, G., Dufour, G., Rogier, F. & Kourtzanidis, K. 2014 Modeling and parametric study of a plasma synthetic jet for flow control. AIAA J. 52 (8), 15911603.Google Scholar
Shuster, J. M. & Smith, D. R. 2007 Experimental study of the formation and scaling of a round synthetic jet. Phys. Fluids 19 (4), 045109.Google Scholar
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets. Phys. Fluids 10 (9), 22812297.Google Scholar
Wang, L., Luo, Z., Xia, Z., Liu, B. & Deng, X. 2012 Review of actuators for high speed active flow control. Sci. China Technol. Sci. 55 (8), 22252240.Google Scholar
Wang, L., Xia, Z., Luo, Z. & Chen, J. 2014 Three-electrode plasma synthetic jet actuator for high-speed flow control. AIAA J. 52 (4), 879882.Google Scholar
Wu, J., Ma, H. & Zhou, M. 2007 Vorticity and Vortex Dynamics. Springer.Google Scholar
Xu, D. A., Shneider, M. N., Lacoste, D. A. & Laux, C. O. 2014 Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air. J. Phys. D 47 (23), 235202.Google Scholar
Zhang, Z., Wu, Y., Jia, M., Song, H., Sun, Z. & Li, Y. 2017 MHD-RLC discharge model and the efficiency characteristics of plasma synthetic jet actuator. Sensors Actuators A 261, 7584.Google Scholar
Zhu, Y., Wu, Y., Jia, M., Liang, H., Li, J. & Li, Y. 2014 Influence of positive slopes on ultrafast heating in an atmospheric nanosecond-pulsed plasma synthetic jet. Plasma Sources Sci. Technol. 24 (1), 015007.Google Scholar
Zong, H., Cui, W., Wu, Y., Zhang, Z., Liang, H., Jia, M. & Li, Y. 2015a Influence of capacitor energy on performance of a three-electrode plasma synthetic jet actuator. Sensors Actuators A 222, 114121.Google Scholar
Zong, H. & Kotsonis, M. 2016a Characterisation of plasma synthetic jet actuators in quiescent flow. J. Phys. D 49 (33), 335202.Google Scholar
Zong, H. & Kotsonis, M. 2016b Electro-mechanical efficiency of plasma synthetic jet actuator driven by capacitive discharge. J. Phys. D 49 (45), 455201.Google Scholar
Zong, H. & Kotsonis, M. 2017a Effect of slotted exit orifice on performance of plasma synthetic jet actuator. Exp. Fluids 58 (3), 17.Google Scholar
Zong, H. & Kotsonis, M. 2017b Interaction between plasma synthetic jet and subsonic turbulent boundary layer. Phys. Fluids 29 (4), 045104.Google Scholar
Zong, H., Wu, Y., Jia, M., Song, H., Liang, H., Li, Y. & Zhang, Z. 2016c Influence of geometrical parameters on performance of plasma synthetic jet actuator. J. Phys. D 49 (2), 025504.Google Scholar
Zong, H, Wu, Y., Li, Y., Song, H., Zhang, Z. & Jia, M. 2015b Analytic model and frequency characteristics of plasma synthetic jet actuator. Phys. Fluids 27 (2), 027105.Google Scholar
Zong, H., Wu, Y., Song, H. & Jia, M. 2016a Efficiency characteristic of plasma synthetic jet actuator driven by pulsed direct-current discharge. AIAA J. 54 (11), 34093420.Google Scholar
Zong, H., Wu, Y., Song, H., Jia, M., Liang, H., Li, Y. & Zhang, Z. 2016b Investigation of the performance characteristics of a plasma synthetic jet actuator based on a quantitative Schlieren method. Meas. Sci. Technol. 27 (5), 055301.Google Scholar