Skip to main content

Formation of sediment patterns in channel flow: minimal unstable systems and their temporal evolution

  • Aman G. Kidanemariam (a1) and Markus Uhlmann (a1)

The phenomenon of sediment pattern formation in a channel flow is numerically investigated by performing simulations which resolve all the relevant length and time scales of the problem. The numerical approach employed and the flow configuration considered is identical to our previous study (Kidanemariam & Uhlmann J. Fluid Mech., vol. 750, 2014, R2), the only difference being the length of the computational domain. The latter was systematically varied in order to investigate its influence on the initiation and evolution aspects. By successively reducing the streamwise length, the minimum box dimension which accommodates an unstable sediment bed is revealed, thus determining the lower threshold of the unstable modes. For the considered parameter point, the cutoff length for pattern formation lies in the range 75–100 times the particle diameter (3–4 times the clear fluid height). We also simulate the flow in a very long streamwise box with a size of 48 times the clear fluid height (featuring well over one million particles), accommodating approximately 11 initial ripple units with a wavelength in the range of 100–110 particle diameters. The evolution of the amplitude of the patterns exhibits two regimes of growth: an initial exponential regime, with a growth rate independent of the chosen domain size, and a subsequent nonlinear regime which is strongly constrained by the domain length. In the small domain cases, after the initial exponential regime, the ripples evolve steadily, maintaining their shape and migration velocity, at a mean wavelength equal to the length of the domain. The asymmetric ripple shape is characterized by a spectrum which exhibits a power-law decay over the first few dominant non-dispersive modes propagating at the mean dune migration velocity. The rate of particle transport and the mean interface shear stress exhibited an increase with increasing ripple dimensions. Nevertheless, the relationship between the two was observed to be approximately described by the empirical power-law formula for sediment transport by Wong & Parker (J. Hydraul. Engng, vol. 132, 2006, pp. 1159–1168).

Corresponding author
Email address for correspondence:
Hide All
Andreotti B. & Claudin P. 2013 Aeolian and subaqueous bedforms in shear flows. Phil. Trans. A Math. Phys. Engng Sci. 371 (2004), 20120364.
Andreotti B., Claudin P., Devauchelle O., Durán O. & Fourrière A. 2011 Bedforms in a turbulent stream: ripples, chevrons and antidunes. J. Fluid Mech. 690, 94128.
Bagnold R. A. 1941 The Physics of Blown Sand and Desert Dunes. Chapman and Hall.
Best J. 2005 The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. 110 (F4), F04S02.
Betat A., Kruelle C. A., Frette V. & Rehberg I. 2002 Long-time behavior of sand ripples induced by water shear flow. Eur. Phys. J. E. 8 (5), 465476.
Blondeaux P. 1990 Sand ripples under sea waves part 1. Ripple formation. J. Fluid Mech. 218, 117.
Blondeaux P., Foti E. & Vittori G. 2015 A theoretical model of asymmetric wave ripples. Phil. Trans. R. Soc. Lond. A 373, 20140112.
Bridge J. S. & Best J. L. 1988 Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: implications for the formation of planar laminae. Sedimentology 35, 753763.
Cardona Florez J. E. & Franklin E. M. 2016 The formation and migration of sand ripples in closed conduits: experiments with turbulent water flows. Exp. Therm. Fluid Sci. 71, 95102.
Chan-Braun C., García-Villalba M. & Uhlmann M. 2011 Force and torque acting on particles in a transitionally rough open-channel flow. J. Fluid Mech. 684, 441474.
Charru F. 2006 Selection of the ripple length on a granular bed sheared by a liquid flow. Phys. Fluids 18 (12), 121508.
Charru F., Andreotti B. & Claudin P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45 (1), 469493.
Chou Y. & Fringer O. B. 2010 A model for the simulation of coupled flow-bed form evolution in turbulent flows. J. Geophys. Res. 115 (C10), C10041.
Claudin P. & Andreotti B. 2006 A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252 (1–2), 3044.
Coleman S. E., Fedele J. J. & Garca M. H. 2003 Closed-conduit bed-form initiation and development. J. Hydraul. Engng 129 (12), 956965.
Coleman S. E. & Melville B. W. 1994 Bed-form development. J. Hydraul. Engng 120 (5), 544560.
Coleman S. E. & Nikora V. I. 2009a Bed and flow dynamics leading to sediment-wave initiation. Water Resour. Res. 45 (4), W04402.
Coleman S. E. & Nikora V. I. 2009b Exner equation: a continuum approximation of a discrete granular system. Water Resour. Res. 45 (9), 18.
Coleman S. E. & Nikora V. I. 2011 Fluvial dunes: initiation, characterization, flow structure. Earth Surf. Process. Landf. 36 (1), 3957.
Colombini M. 2014 A decade’s investigation of the stability of erodible stream beds. J. Fluid Mech. 756, 14.
Colombini M. & Stocchino A. 2008 Finite-amplitude river dunes. J. Fluid Mech. 611, 283306.
Derksen J. J. 2015 Simulations of granular bed erosion due to a mildly turbulent shear flow. J. Hydraul. Res. 53 (5), 622632.
Durań O., Andreotti B. & Claudin P. 2012 Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24 (10), 103306.
Duran O., Claudin P. & Andreotti B. 2014 Direct numerical simulations of aeolian sand ripples. Proc. Natl Acad. Sci. USA 111 (44), 1566515668.
Engelund F. & Fredsoe J. 1982 Sediment ripples and dunes. Annu. Rev. Fluid Mech. 14 (1), 1337.
Fourrière A., Claudin P. & Andreotti B. 2010 Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid Mech. 649, 287328.
Franklin E. M. & Charru F. 2011 Subaqueous barchan dunes in turbulent shear flow. Part 1. Dune motion. J. Fluid Mech. 675 (1988), 199222.
Gaeuman D. & Jacobson R. B. 2007 Field assessment of alternative bed-load transport estimators. J. Hydraul. Engng 133 (12), 13191328.
García M. H.(Ed.) 2008 Sedimentation Engineering. Processes, Measurments, Modeling and Practice. American Society of Civil Engineers.
Hersen P., Douady S. & Andreotti B. 2002 Relevant length scale of barchan dunes. Phys. Rev. Lett. 89 (26), 264301.
Hino M. 1968 Equilibrium-range spectra of sand waves formed by flowing water. J. Fluid Mech. 34 (03), 565573.
Jain S. C. & Kennedy J. F. 1974 The spectral evolution of sedimentary bed forms. J. Fluid Mech. 63 (02), 301.
Jenny M., Dušek J. & Bouchet G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.
Jiménez J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Jiménez J. & Moin P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Julien P. Y. 1998 Erosion and Sedimentation. Cambridge University Press.
Khosronejad A. & Sotiropoulos F. 2014 Numerical simulation of sand waves in a turbulent open channel flow. J. Fluid Mech. 753, 150216.
Kidanemariam A. G.2015 The formation of patterns in subaqueous sediment. PhD thesis, Karlsruhe Institute of Technology.
Kidanemariam A. G., Chan-Braun C., Doychev T. & Uhlmann M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15 (2), 025031.
Kidanemariam A. G. & Uhlmann M. 2014a Direct numerical simulation of pattern formation in subaqueous sediment. J. Fluid Mech. 750, R2.
Kidanemariam A. G. & Uhlmann M. 2014b Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. Intl J. Multiphase Flow 127.
Langlois V. & Valance A. 2007 Initiation and evolution of current ripples on a flat sand bed under turbulent water flow. Eur. Phys. J. E. 22 (3), 201208.
Maurin R., Chauchat J., Chareyre B. & Frey P. 2015 A minimal coupled fluid-discrete element model for bedload transport. Phys. Fluids 27 (11), 113302.
Meyer-Peter E. & Müller R. 1948 Formulas for bed-load transport. In Proceedings of 2nd Meeting, Stockholm, Sweden, pp. 3964. IAHR.
Nikora V., McEwan I., McLean S., Coleman S., Pokrajac D. & Walters R. 2007 Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J. Hydraul. Engng 133 (8), 873883.
Nikora V. I., Sukhodolov A. N. & Rowinski P. M. 1997 Statistical sand wave dynamics in one-directional water flows. J. Fluid Mech. 351, 1719.
Ouriemi M., Aussillous P. & Guazzelli É. 2009 Sediment dynamics. Part 2. Dune formation in pipe flow. J. Fluid Mech. 636, 295319.
Raudkivi A. J. 1997 Ripples on stream bed. J. Hydraul. Engng 123 (1), 5864.
Sauermann G., Kroy K. & Herrmann H. 2001 Continuum saltation model for sand dunes. Phys. Rev. E 64 (3), 031305.
Schmeeckle M. W. 2014 Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res. Earth Surf. 119 (6), 12401262.
Seminara G. 2010 Fluvial sedimentary patterns. Annu. Rev. Fluid Mech. 42 (1), 4366.
Sleath J. F. A. 1976 On rolling-grain ripples. J. Hydraul. Res. 14 (1), 6981.
Soulsby R. L. & Whitehouse R. J. S. 1997 Threshold of sediment motion in coastal environments. In Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference, pp. 149154. Centre for Advanced Engineering, University of Canterbury.
Uhlmann M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.
Uhlmann M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (5), 053305.
Vittori G. & Blondeaux P. 1990 Sand ripples under sea waves part 2. Finite-amplitude development. J. Fluid Mech. 218, 1939.
Vowinckel B., Kempe T. & Fröhlich J. 2014 Fluid-particle interaction in turbulent open channel flow with fully-resolved mobile beds. Adv. Water Resour. 72, 3244.
Wong M. & Parker G. 2006 Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. J. Hydraul. Engng 132, 11591168.
Yalin M. S. 1977 Mechanics of Sediment Transport, 2nd edn. Pergamon.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 6
Total number of PDF views: 173 *
Loading metrics...

Abstract views

Total abstract views: 332 *
Loading metrics...

* Views captured on Cambridge Core between 6th April 2017 - 21st February 2018. This data will be updated every 24 hours.